TransFA: Transformer-based Representation for Face Attribute Evaluation
- URL: http://arxiv.org/abs/2207.05456v1
- Date: Tue, 12 Jul 2022 10:58:06 GMT
- Title: TransFA: Transformer-based Representation for Face Attribute Evaluation
- Authors: Decheng Liu, Weijie He, Chunlei Peng, Nannan Wang, Jie Li, Xinbo Gao
- Abstract summary: We propose a novel textbftransformer-based representation for textbfattribute evaluation method (textbfTransFA)
The proposed TransFA achieves superior performances compared with state-of-the-art methods.
- Score: 87.09529826340304
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Face attribute evaluation plays an important role in video surveillance and
face analysis. Although methods based on convolution neural networks have made
great progress, they inevitably only deal with one local neighborhood with
convolutions at a time. Besides, existing methods mostly regard face attribute
evaluation as the individual multi-label classification task, ignoring the
inherent relationship between semantic attributes and face identity
information. In this paper, we propose a novel \textbf{trans}former-based
representation for \textbf{f}ace \textbf{a}ttribute evaluation method
(\textbf{TransFA}), which could effectively enhance the attribute
discriminative representation learning in the context of attention mechanism.
The multiple branches transformer is employed to explore the inter-correlation
between different attributes in similar semantic regions for attribute feature
learning. Specially, the hierarchical identity-constraint attribute loss is
designed to train the end-to-end architecture, which could further integrate
face identity discriminative information to boost performance. Experimental
results on multiple face attribute benchmarks demonstrate that the proposed
TransFA achieves superior performances compared with state-of-the-art methods.
Related papers
- Dual Relation Mining Network for Zero-Shot Learning [48.89161627050706]
We propose a Dual Relation Mining Network (DRMN) to enable effective visual-semantic interactions and learn semantic relationship among attributes for knowledge transfer.
Specifically, we introduce a Dual Attention Block (DAB) for visual-semantic relationship mining, which enriches visual information by multi-level feature fusion.
For semantic relationship modeling, we utilize a Semantic Interaction Transformer (SIT) to enhance the generalization of attribute representations among images.
arXiv Detail & Related papers (2024-05-06T16:31:19Z) - High-Discriminative Attribute Feature Learning for Generalized Zero-Shot Learning [54.86882315023791]
We propose an innovative approach called High-Discriminative Attribute Feature Learning for Generalized Zero-Shot Learning (HDAFL)
HDAFL utilizes multiple convolutional kernels to automatically learn discriminative regions highly correlated with attributes in images.
We also introduce a Transformer-based attribute discrimination encoder to enhance the discriminative capability among attributes.
arXiv Detail & Related papers (2024-04-07T13:17:47Z) - Selective Domain-Invariant Feature for Generalizable Deepfake Detection [21.671221284842847]
We propose a novel framework which reduces the sensitivity to face forgery by fusing content features and styles.
Both qualitative and quantitative results in existing benchmarks and proposals demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2024-03-19T13:09:19Z) - A Solution to Co-occurrence Bias: Attributes Disentanglement via Mutual
Information Minimization for Pedestrian Attribute Recognition [10.821982414387525]
We show that current methods can actually suffer in generalizing such fitted attributes interdependencies onto scenes or identities off the dataset distribution.
To render models robust in realistic scenes, we propose the attributes-disentangled feature learning to ensure the recognition of an attribute not inferring on the existence of others.
arXiv Detail & Related papers (2023-07-28T01:34:55Z) - Part-guided Relational Transformers for Fine-grained Visual Recognition [59.20531172172135]
We propose a framework to learn the discriminative part features and explore correlations with a feature transformation module.
Our proposed approach does not rely on additional part branches and reaches state-the-of-art performance on 3-of-the-level object recognition.
arXiv Detail & Related papers (2022-12-28T03:45:56Z) - Attribute Prototype Network for Any-Shot Learning [113.50220968583353]
We argue that an image representation with integrated attribute localization ability would be beneficial for any-shot, i.e. zero-shot and few-shot, image classification tasks.
We propose a novel representation learning framework that jointly learns global and local features using only class-level attributes.
arXiv Detail & Related papers (2022-04-04T02:25:40Z) - AGA-GAN: Attribute Guided Attention Generative Adversarial Network with
U-Net for Face Hallucination [15.010153819096056]
We propose an Attribute Guided Attention Generative Adversarial Network which employs attribute guided attention (AGA) modules to identify and focus the generation process on various facial features in the image.
AGA-GAN and AGA-GAN+U-Net framework outperforms several other cutting-edge face hallucination state-of-the-art methods.
arXiv Detail & Related papers (2021-11-20T13:43:03Z) - Deep Collaborative Multi-Modal Learning for Unsupervised Kinship
Estimation [53.62256887837659]
Kinship verification is a long-standing research challenge in computer vision.
We propose a novel deep collaborative multi-modal learning (DCML) to integrate the underlying information presented in facial properties.
Our DCML method is always superior to some state-of-the-art kinship verification methods.
arXiv Detail & Related papers (2021-09-07T01:34:51Z) - Disentangled Face Attribute Editing via Instance-Aware Latent Space
Search [30.17338705964925]
A rich set of semantic directions exist in the latent space of Generative Adversarial Networks (GANs)
Existing methods may suffer poor attribute variation disentanglement, leading to unwanted change of other attributes when altering the desired one.
We propose a novel framework (IALS) that performs Instance-Aware Latent-Space Search to find semantic directions for disentangled attribute editing.
arXiv Detail & Related papers (2021-05-26T16:19:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.