Self-Supervised Bug Detection and Repair
- URL: http://arxiv.org/abs/2105.12787v1
- Date: Wed, 26 May 2021 18:41:05 GMT
- Title: Self-Supervised Bug Detection and Repair
- Authors: Miltiadis Allamanis, Henry Jackson-Flux, Marc Brockschmidt
- Abstract summary: We present BugLab, an approach for self-supervised learning of bug detection and repair.
A Python implementation of BugLab improves by up to 30% upon baseline methods on a test dataset of 2374 real-life bugs.
- Score: 27.46717890823656
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning-based program analyses have recently shown the promise of
integrating formal and probabilistic reasoning towards aiding software
development. However, in the absence of large annotated corpora, training these
analyses is challenging. Towards addressing this, we present BugLab, an
approach for self-supervised learning of bug detection and repair. BugLab
co-trains two models: (1) a detector model that learns to detect and repair
bugs in code, (2) a selector model that learns to create buggy code for the
detector to use as training data. A Python implementation of BugLab improves by
up to 30% upon baseline methods on a test dataset of 2374 real-life bugs and
finds 19 previously unknown bugs in open-source software.
Related papers
- Leveraging Large Language Models for Efficient Failure Analysis in Game Development [47.618236610219554]
This paper proposes a new approach to automatically identify which change in the code caused a test to fail.
The method leverages Large Language Models (LLMs) to associate error messages with the corresponding code changes causing the failure.
Our approach reaches an accuracy of 71% in our newly created dataset, which comprises issues reported by developers at EA over a period of one year.
arXiv Detail & Related papers (2024-06-11T09:21:50Z) - Automated Bug Generation in the era of Large Language Models [6.0770779409377775]
BugFarm transforms arbitrary code into multiple complex bugs.
A comprehensive evaluation of 435k+ bugs from over 1.9M mutants generated by BUGFARM.
arXiv Detail & Related papers (2023-10-03T20:01:51Z) - WELL: Applying Bug Detectors to Bug Localization via Weakly Supervised
Learning [37.09621161662761]
This paper proposes a WEakly supervised bug LocaLization (WELL) method to train a bug localization model.
With CodeBERT finetuned on the buggy-or-not binary labeled data, WELL can address bug localization in a weakly supervised manner.
arXiv Detail & Related papers (2023-05-27T06:34:26Z) - Teaching Large Language Models to Self-Debug [62.424077000154945]
Large language models (LLMs) have achieved impressive performance on code generation.
We propose Self- Debugging, which teaches a large language model to debug its predicted program via few-shot demonstrations.
arXiv Detail & Related papers (2023-04-11T10:43:43Z) - Infrared: A Meta Bug Detector [10.541969253100815]
We propose a new approach, called meta bug detection, which offers three crucial advantages over existing learning-based bug detectors.
Our evaluation shows our meta bug detector (MBD) is effective in catching a variety of bugs including null pointer dereference, array index out-of-bound, file handle leak, and even data races in concurrent programs.
arXiv Detail & Related papers (2022-09-18T09:08:51Z) - BigIssue: A Realistic Bug Localization Benchmark [89.8240118116093]
BigIssue is a benchmark for realistic bug localization.
We provide a general benchmark with a diversity of real and synthetic Java bugs.
We hope to advance the state of the art in bug localization, in turn improving APR performance and increasing its applicability to the modern development cycle.
arXiv Detail & Related papers (2022-07-21T20:17:53Z) - On Distribution Shift in Learning-based Bug Detectors [4.511923587827301]
We train a bug detector in two phases, first on a synthetic bug distribution to adapt the model to the bug detection domain, and then on a real bug distribution to drive the model towards the real distribution.
We evaluate our approach extensively on three widely studied bug types, for which we construct new datasets carefully designed to capture the real bug distribution.
arXiv Detail & Related papers (2022-04-21T12:17:22Z) - DapStep: Deep Assignee Prediction for Stack Trace Error rePresentation [61.99379022383108]
We propose new deep learning models to solve the bug triage problem.
The models are based on a bidirectional recurrent neural network with attention and on a convolutional neural network.
To improve the quality of ranking, we propose using additional information from version control system annotations.
arXiv Detail & Related papers (2022-01-14T00:16:57Z) - Generating Bug-Fixes Using Pretrained Transformers [11.012132897417592]
We introduce a data-driven program repair approach which learns to detect and fix bugs in Java methods mined from real-world GitHub.
We show that pretraining on source code programs improves the number of patches found by 33% as compared to supervised training from scratch.
We refine the standard accuracy evaluation metric into non-deletion and deletion-only fixes, and show that our best model generates 75% more non-deletion fixes than the previous state of the art.
arXiv Detail & Related papers (2021-04-16T05:27:04Z) - D2A: A Dataset Built for AI-Based Vulnerability Detection Methods Using
Differential Analysis [55.15995704119158]
We propose D2A, a differential analysis based approach to label issues reported by static analysis tools.
We use D2A to generate a large labeled dataset to train models for vulnerability identification.
arXiv Detail & Related papers (2021-02-16T07:46:53Z) - Beyond Accuracy: Behavioral Testing of NLP models with CheckList [66.42971817954806]
CheckList is a task-agnostic methodology for testing NLP models.
CheckList includes a matrix of general linguistic capabilities and test types that facilitate comprehensive test ideation.
In a user study, NLP practitioners with CheckList created twice as many tests, and found almost three times as many bugs as users without it.
arXiv Detail & Related papers (2020-05-08T15:48:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.