論文の概要: How saccadic vision might help with theinterpretability of deep networks
- arxiv url: http://arxiv.org/abs/2105.13264v1
- Date: Thu, 27 May 2021 16:02:40 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-28 21:54:25.560093
- Title: How saccadic vision might help with theinterpretability of deep networks
- Title(参考訳): 深層ネットワークの解釈可能性にサスカディック・ビジョンがどう役立つか
- Authors: Iana Sereda and Grigory Osipov
- Abstract要約: 現代の深層ネットワークにおけるいくつかの問題(解釈可能性、オブジェクト指向性の欠如)は、生物学的に妥当な知覚のサカデミズムを適用することで、どのように解決できるかを述べる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We describe how some problems (interpretability,lack of object-orientedness)
of modern deep networks potentiallycould be solved by adapting a biologically
plausible saccadicmechanism of perception. A sketch of such a saccadic
visionmodel is proposed. Proof of concept experimental results areprovided to
support the proposed approach.
- Abstract(参考訳): 本稿では,現代の深層ネットワークのいくつかの問題(解釈可能性,オブジェクト指向性)が,生物学的に妥当な認識機構に適応することでどのように解決されるかを述べる。
このようなsaccadic visionmodelのスケッチが提案されている。
概念実証実験の結果は,提案手法を裏付けるものである。
関連論文リスト
- Exploiting Interpretable Capabilities with Concept-Enhanced Diffusion and Prototype Networks [8.391254800873599]
既存のアーキテクチャに概念情報を組み込んだ、概念に富んだモデルを作成します。
特に,概念の視覚的表現を生成できる概念誘導拡散条件と,概念誘導型プロトタイプネットワークを提案する。
これらの結果は、機械学習をより人間に理解しやすいものにするために、既存の情報を活用することによって、新たな研究の行を開放する。
論文 参考訳(メタデータ) (2024-10-24T13:07:56Z) - Perturbation on Feature Coalition: Towards Interpretable Deep Neural Networks [0.1398098625978622]
ディープニューラルネットワーク(DNN)の“ブラックボックス”という性質は、透明性と信頼性を損なう。
本稿では,ネットワークの深い情報を利用して相関した特徴を抽出する,特徴連立による摂動に基づく解釈を提案する。
論文 参考訳(メタデータ) (2024-08-23T22:44:21Z) - Hierarchical Invariance for Robust and Interpretable Vision Tasks at Larger Scales [54.78115855552886]
本稿では、畳み込みニューラルネットワーク(CNN)のような階層型アーキテクチャを用いて、オーバーコンプリート不変量を構築する方法を示す。
オーバーコンプリート性により、そのタスクはニューラルアーキテクチャサーチ(NAS)のような方法で適応的に形成される。
大規模で頑健で解釈可能な視覚タスクの場合、階層的不変表現は伝統的なCNNや不変量に対する効果的な代替物とみなすことができる。
論文 参考訳(メタデータ) (2024-02-23T16:50:07Z) - A Survey on Transferability of Adversarial Examples across Deep Neural Networks [53.04734042366312]
逆の例では、機械学習モデルを操作して誤った予測を行うことができます。
敵の例の転送可能性により、ターゲットモデルの詳細な知識を回避できるブラックボックス攻撃が可能となる。
本研究は, 対角移動可能性の展望を考察した。
論文 参考訳(メタデータ) (2023-10-26T17:45:26Z) - Mapping Knowledge Representations to Concepts: A Review and New
Perspectives [0.6875312133832078]
本論は、内部表現と人間の理解可能な概念を関連付けることを目的とした研究に焦点をあてる。
この分類学と因果関係の理論は、ニューラルネットワークの説明から期待できるもの、期待できないものを理解するのに有用である。
この分析は、モデル説明可能性の目標に関するレビューされた文献の曖昧さも明らかにしている。
論文 参考訳(メタデータ) (2022-12-31T12:56:12Z) - Learning with Capsules: A Survey [73.31150426300198]
カプセルネットワークは、オブジェクト中心の表現を学習するための畳み込みニューラルネットワーク(CNN)に代わるアプローチとして提案された。
CNNとは異なり、カプセルネットワークは部分的に階層的な関係を明示的にモデル化するように設計されている。
論文 参考訳(メタデータ) (2022-06-06T15:05:36Z) - Towards Interpretable Deep Networks for Monocular Depth Estimation [78.84690613778739]
我々は,深部MDEネットワークの解釈可能性について,その隠蔽ユニットの深さ選択性を用いて定量化する。
本稿では,解釈可能なMDE深層ネットワークを,元のアーキテクチャを変更することなく学習する手法を提案する。
実験により,本手法は深部MDEネットワークの解釈可能性を向上させることができることが示された。
論文 参考訳(メタデータ) (2021-08-11T16:43:45Z) - Exploring Adversarial Examples via Invertible Neural Networks [10.320129984220857]
逆の例(AEs)は、原画像にわずかな摂動を導入することによって、ディープニューラルネットワーク(DNN)分類器を誤解させることのできるイメージである。
このセキュリティ脆弱性は、ニューラルネットワークに依存するシステムに現実世界の脅威をもたらす可能性があるため、近年、大きな研究につながった。
本稿では,リプシッツ連続写像関数を用いたインバータブルニューラルモデル(invertible neural model)の入力から出力への新たな理解方法を提案する。
論文 参考訳(メタデータ) (2020-12-24T05:17:21Z) - A Chain Graph Interpretation of Real-World Neural Networks [58.78692706974121]
本稿では,NNを連鎖グラフ(CG)、フィードフォワードを近似推論手法として識別する別の解釈を提案する。
CG解釈は、確率的グラフィカルモデルのリッチな理論的枠組みの中で、各NNコンポーネントの性質を規定する。
我々は,CG解釈が様々なNN技術に対する新しい理論的支援と洞察を提供することを示す具体例を実例で示す。
論文 参考訳(メタデータ) (2020-06-30T14:46:08Z) - Proper Network Interpretability Helps Adversarial Robustness in
Classification [91.39031895064223]
本稿では,解釈の適切な測定を行うことで,予測回避攻撃が解釈の不一致を引き起こすのを防ぐことは困難であることを示す。
我々は,頑健な解釈の促進にのみ焦点をあてて,解釈可能性に配慮した防御手法を開発した。
その結果,我々の防衛力は,強靭な分類と頑健な解釈の両方を達成し,大規模な摂動攻撃に対する最先端の対人訓練方法よりも優れていた。
論文 参考訳(メタデータ) (2020-06-26T01:31:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。