Entanglement properties and ground-state statistics of free bosons
- URL: http://arxiv.org/abs/2105.13269v2
- Date: Sat, 5 Mar 2022 17:31:09 GMT
- Title: Entanglement properties and ground-state statistics of free bosons
- Authors: Luca Dell'Anna
- Abstract summary: We show that all those quantities can be derived from a multinomial form of the reduced density matrix in the configuration space.
We provide by this analysis a unified approach based on a reduced density matrix technique useful to calculate both the entanglement properties and an infinite number of correlation functions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We calculate analytically the entanglement and R\'enyi entropies, the
negativity and the mutual information together with all the density and
many-particle correlation functions for free bosons on a lattice in the ground
state, for both homogeneous and inhomogeneous systems. We show that all those
quantities can be derived from a multinomial form of the reduced density matrix
in the configuration space whose diagonal elements dictate the statistics of
the particle distribution, while the off-diagonal coherence terms control the
quantum fluctuations. We provide by this analysis a unified approach based on a
reduced density matrix technique useful to calculate both the entanglement
properties and an infinite number of correlation functions.
Related papers
- Exact Numerical Solution of Stochastic Master Equations for Conditional
Spin Squeezing [6.824341405962008]
We present an exact numerical solution of conditional spin squeezing equations for systems with identical atoms.
We demonstrate that the spin squeezing can be vividly illustrated by the Gaussian-like distribution of the collective density matrix elements.
arXiv Detail & Related papers (2024-02-04T14:03:42Z) - Exact asymptotics of long-range quantum correlations in a nonequilibrium steady state [0.0]
We analytically study the scaling of quantum correlation measures on a one-dimensional containing a noninteracting impurity.
We derive the exact form of the subleading logarithmic corrections to the extensive terms of correlation measures.
This echoes the case of equilibrium states, where such logarithmic terms may convey universal information about the physical system.
arXiv Detail & Related papers (2023-10-25T18:00:48Z) - Dilute neutron star matter from neural-network quantum states [58.720142291102135]
Low-density neutron matter is characterized by the formation of Cooper pairs and the onset of superfluidity.
We model this density regime by capitalizing on the expressivity of the hidden-nucleon neural-network quantum states combined with variational Monte Carlo and reconfiguration techniques.
arXiv Detail & Related papers (2022-12-08T17:55:25Z) - Quantum correlations, entanglement spectrum and coherence of
two-particle reduced density matrix in the Extended Hubbard Model [62.997667081978825]
We study the ground state properties of the one-dimensional extended Hubbard model at half-filling.
In particular, in the superconducting region, we obtain that the entanglement spectrum signals a transition between a dominant singlet (SS) to triplet (TS) pairing ordering in the system.
arXiv Detail & Related papers (2021-10-29T21:02:24Z) - Entanglement Entropy of Non-Hermitian Free Fermions [59.54862183456067]
We study the entanglement properties of non-Hermitian free fermionic models with translation symmetry.
Our results show that the entanglement entropy has a logarithmic correction to the area law in both one-dimensional and two-dimensional systems.
arXiv Detail & Related papers (2021-05-20T14:46:09Z) - Exact thermal properties of free-fermionic spin chains [68.8204255655161]
We focus on spin chain models that admit a description in terms of free fermions.
Errors stemming from the ubiquitous approximation are identified in the neighborhood of the critical point at low temperatures.
arXiv Detail & Related papers (2021-03-30T13:15:44Z) - Long-distance entanglement of purification and reflected entropy in
conformal field theory [58.84597116744021]
We study entanglement properties of mixed states in quantum field theory via entanglement of purification and reflected entropy.
We find an elementary proof that the decay of both, the entanglement of purification and reflected entropy, is enhanced with respect to the mutual information behaviour.
arXiv Detail & Related papers (2021-01-29T19:00:03Z) - Spectral statistics for the difference of two Wishart matrices [1.2225709246035374]
We derive the joint probability density function of the corresponding eigenvalues in a finite-dimension scenario using two distinct approaches.
We point out the relationship of these results with the corresponding results for difference of two random density matrices and obtain some explicit and closed form expressions for the spectral density and absolute mean.
arXiv Detail & Related papers (2020-11-14T18:43:34Z) - Hilbert-space geometry of random-matrix eigenstates [55.41644538483948]
We discuss the Hilbert-space geometry of eigenstates of parameter-dependent random-matrix ensembles.
Our results give the exact joint distribution function of the Fubini-Study metric and the Berry curvature.
We compare our results to numerical simulations of random-matrix ensembles as well as electrons in a random magnetic field.
arXiv Detail & Related papers (2020-11-06T19:00:07Z) - Absorption and analysis of unbound quantum particles -- one by one [0.0]
We present methods for calculating differential probabilities for unbound particles.
In addition to attenuating outgoing waves, this absorber is also used to probe them by projection onto single-particle scattering states.
We show how energy distributions of unbound particles may be determined on numerical domains considerably smaller than the actual extension of the system.
arXiv Detail & Related papers (2020-10-06T12:48:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.