Exact Numerical Solution of Stochastic Master Equations for Conditional
Spin Squeezing
- URL: http://arxiv.org/abs/2402.02495v1
- Date: Sun, 4 Feb 2024 14:03:42 GMT
- Title: Exact Numerical Solution of Stochastic Master Equations for Conditional
Spin Squeezing
- Authors: ZhiQing Zhang, Yuan Zhang, HaiZhong Guo, ChongXin Shan, Gang Chen and
Klaus M{\o}lmer
- Abstract summary: We present an exact numerical solution of conditional spin squeezing equations for systems with identical atoms.
We demonstrate that the spin squeezing can be vividly illustrated by the Gaussian-like distribution of the collective density matrix elements.
- Score: 6.824341405962008
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Stochastic master equations are often used to describe conditional spin
squeezing of atomic ensemble, but are limited so far to the systems with few
atoms due to the exponentially increased Hilbert space. In this article, we
present an exact numerical solution of these equations for systems with
identical atoms by mapping identical density matrix elements to a single
quantity characterized by collective quantum numbers, and apply it to the
system with hundred atoms in a bad cavity subject to a homodyne detection. We
demonstrate that the spin squeezing can be vividly illustrated by the
Gaussian-like distribution of the collective density matrix elements, and we
examine the influence of the probe field strength and polarization, the
detection efficiency, the spontaneous emission rate and the number of atoms.
Our exact approach can play an important role in gauging the approximate
approaches applied for systems with more atoms, such as Gaussian-state
formalism and stochastic mean-field approach, and it permits also exploration
of entanglement effects beyond these approaches.
Related papers
- Dirac Equation Solution with Generalized tanh-Shaped Hyperbolic Potential: Application to Charmonium and Bottomonium Mass Spectra [0.0]
We use a generalized tanh shaped hyperbolic potential to investigate bound state solutions of the Dirac equation.
Results indicate that the energy eigenvalues are strongly correlated with the potential parameters.
Using this potential to model mass spectra of charmonium and bottomonium, we show that results for the calculated quark mass spectra align closely with experimentally observed values.
arXiv Detail & Related papers (2024-09-23T20:40:59Z) - Exact asymptotics of long-range quantum correlations in a nonequilibrium steady state [0.0]
We analytically study the scaling of quantum correlation measures on a one-dimensional containing a noninteracting impurity.
We derive the exact form of the subleading logarithmic corrections to the extensive terms of correlation measures.
This echoes the case of equilibrium states, where such logarithmic terms may convey universal information about the physical system.
arXiv Detail & Related papers (2023-10-25T18:00:48Z) - Stochastic Mean-field Theory for Conditional Spin Squeezing by Homodyne
Probing of Atom-Cavity Photon Dressed States [7.382089528638367]
We present a variant of cumulant mean-field theory to simulate the effect of continuous optical probing of an atomic ensemble.
We apply the theory to a system with tens of thousands of rubidium-87 atom in an optical cavity.
arXiv Detail & Related papers (2023-06-01T16:25:30Z) - Dilute neutron star matter from neural-network quantum states [58.720142291102135]
Low-density neutron matter is characterized by the formation of Cooper pairs and the onset of superfluidity.
We model this density regime by capitalizing on the expressivity of the hidden-nucleon neural-network quantum states combined with variational Monte Carlo and reconfiguration techniques.
arXiv Detail & Related papers (2022-12-08T17:55:25Z) - Calculating non-linear response functions for multi-dimensional
electronic spectroscopy using dyadic non-Markovian quantum state diffusion [68.8204255655161]
We present a methodology for simulating multi-dimensional electronic spectra of molecular aggregates with coupling electronic excitation to a structured environment.
A crucial aspect of our approach is that we propagate the NMQSD equation in a doubled system Hilbert space but with the same noise.
arXiv Detail & Related papers (2022-07-06T15:30:38Z) - Phase Diagram Detection via Gaussian Fitting of Number Probability
Distribution [0.0]
We investigate the number probability density function that characterizes sub-portions of a quantum many-body system with globally conserved number of particles.
We put forward a linear fitting protocol capable of mapping out the ground-state phase diagram of the rich one-dimensional extended Bose-Hubbard model.
arXiv Detail & Related papers (2022-07-04T15:15:01Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Spectral density reconstruction with Chebyshev polynomials [77.34726150561087]
We show how to perform controllable reconstructions of a finite energy resolution with rigorous error estimates.
This paves the way for future applications in nuclear and condensed matter physics.
arXiv Detail & Related papers (2021-10-05T15:16:13Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Entanglement Measures in a Nonequilibrium Steady State: Exact Results in
One Dimension [0.0]
Entanglement plays a prominent role in the study of condensed matter many-body systems.
We show that the scaling of entanglement with the length of a subsystem is highly unusual, containing both a volume-law linear term and a logarithmic term.
arXiv Detail & Related papers (2021-05-03T10:35:09Z) - Bernstein-Greene-Kruskal approach for the quantum Vlasov equation [91.3755431537592]
The one-dimensional stationary quantum Vlasov equation is analyzed using the energy as one of the dynamical variables.
In the semiclassical case where quantum tunneling effects are small, an infinite series solution is developed.
arXiv Detail & Related papers (2021-02-18T20:55:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.