Empirical Study of Multi-Task Hourglass Model for Semantic Segmentation
Task
- URL: http://arxiv.org/abs/2105.13531v1
- Date: Fri, 28 May 2021 01:08:10 GMT
- Title: Empirical Study of Multi-Task Hourglass Model for Semantic Segmentation
Task
- Authors: Darwin Saire and Ad\'in Ram\'irez Rivera
- Abstract summary: We propose to use a multi-task approach by complementing the semantic segmentation task with edge detection, semantic contour, and distance transform tasks.
We demonstrate the effectiveness of learning in a multi-task setting for hourglass models in the Cityscapes, CamVid, and Freiburg Forest datasets.
- Score: 0.7614628596146599
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The semantic segmentation (SS) task aims to create a dense classification by
labeling at the pixel level each object present on images. Convolutional neural
network (CNN) approaches have been widely used, and exhibited the best results
in this task. However, the loss of spatial precision on the results is a main
drawback that has not been solved. In this work, we propose to use a multi-task
approach by complementing the semantic segmentation task with edge detection,
semantic contour, and distance transform tasks. We propose that by sharing a
common latent space, the complementary tasks can produce more robust
representations that can enhance the semantic labels. We explore the influence
of contour-based tasks on latent space, as well as their impact on the final
results of SS. We demonstrate the effectiveness of learning in a multi-task
setting for hourglass models in the Cityscapes, CamVid, and Freiburg Forest
datasets by improving the state-of-the-art without any refinement
post-processing.
Related papers
- Evaluating the Efficacy of Cut-and-Paste Data Augmentation in Semantic Segmentation for Satellite Imagery [4.499833362998487]
This study explores the effectiveness of a Cut-and-Paste augmentation technique for semantic segmentation in satellite images.
We adapt this augmentation, which usually requires labeled instances, to the case of semantic segmentation.
Using the DynamicEarthNet dataset and a U-Net model for evaluation, we found that this augmentation significantly enhances the mIoU score on the test set from 37.9 to 44.1.
arXiv Detail & Related papers (2024-04-08T17:18:30Z) - Auxiliary Tasks Enhanced Dual-affinity Learning for Weakly Supervised
Semantic Segmentation [79.05949524349005]
We propose AuxSegNet+, a weakly supervised auxiliary learning framework to explore the rich information from saliency maps.
We also propose a cross-task affinity learning mechanism to learn pixel-level affinities from the saliency and segmentation feature maps.
arXiv Detail & Related papers (2024-03-02T10:03:21Z) - Distribution Matching for Multi-Task Learning of Classification Tasks: a
Large-Scale Study on Faces & Beyond [62.406687088097605]
Multi-Task Learning (MTL) is a framework, where multiple related tasks are learned jointly and benefit from a shared representation space.
We show that MTL can be successful with classification tasks with little, or non-overlapping annotations.
We propose a novel approach, where knowledge exchange is enabled between the tasks via distribution matching.
arXiv Detail & Related papers (2024-01-02T14:18:11Z) - Self-supervised Pre-training for Semantic Segmentation in an Indoor
Scene [8.357801312689622]
We propose RegConsist, a method for self-supervised pre-training of a semantic segmentation model.
We use a variant of contrastive learning to train a DCNN model for predicting semantic segmentation from RGB views in the target environment.
The proposed method outperforms models pre-trained on ImageNet and achieves competitive performance when using models that are trained for exactly the same task but on a different dataset.
arXiv Detail & Related papers (2022-10-04T20:10:14Z) - Semantics-Depth-Symbiosis: Deeply Coupled Semi-Supervised Learning of
Semantics and Depth [83.94528876742096]
We tackle the MTL problem of two dense tasks, ie, semantic segmentation and depth estimation, and present a novel attention module called Cross-Channel Attention Module (CCAM)
In a true symbiotic spirit, we then formulate a novel data augmentation for the semantic segmentation task using predicted depth called AffineMix, and a simple depth augmentation using predicted semantics called ColorAug.
Finally, we validate the performance gain of the proposed method on the Cityscapes dataset, which helps us achieve state-of-the-art results for a semi-supervised joint model based on depth and semantic
arXiv Detail & Related papers (2022-06-21T17:40:55Z) - Leveraging Auxiliary Tasks with Affinity Learning for Weakly Supervised
Semantic Segmentation [88.49669148290306]
We propose a novel weakly supervised multi-task framework called AuxSegNet to leverage saliency detection and multi-label image classification as auxiliary tasks.
Inspired by their similar structured semantics, we also propose to learn a cross-task global pixel-level affinity map from the saliency and segmentation representations.
The learned cross-task affinity can be used to refine saliency predictions and propagate CAM maps to provide improved pseudo labels for both tasks.
arXiv Detail & Related papers (2021-07-25T11:39:58Z) - Learning to Relate Depth and Semantics for Unsupervised Domain
Adaptation [87.1188556802942]
We present an approach for encoding visual task relationships to improve model performance in an Unsupervised Domain Adaptation (UDA) setting.
We propose a novel Cross-Task Relation Layer (CTRL), which encodes task dependencies between the semantic and depth predictions.
Furthermore, we propose an Iterative Self-Learning (ISL) training scheme, which exploits semantic pseudo-labels to provide extra supervision on the target domain.
arXiv Detail & Related papers (2021-05-17T13:42:09Z) - SOSD-Net: Joint Semantic Object Segmentation and Depth Estimation from
Monocular images [94.36401543589523]
We introduce the concept of semantic objectness to exploit the geometric relationship of these two tasks.
We then propose a Semantic Object and Depth Estimation Network (SOSD-Net) based on the objectness assumption.
To the best of our knowledge, SOSD-Net is the first network that exploits the geometry constraint for simultaneous monocular depth estimation and semantic segmentation.
arXiv Detail & Related papers (2021-01-19T02:41:03Z) - Multi-task GANs for Semantic Segmentation and Depth Completion with
Cycle Consistency [7.273142068778457]
We propose multi-task generative adversarial networks (Multi-task GANs), which are competent in semantic segmentation and depth completion.
In this paper, we improve the details of generated semantic images based on CycleGAN by introducing multi-scale spatial pooling blocks and the structural similarity reconstruction loss.
Experiments on Cityscapes dataset and KITTI depth completion benchmark show that the Multi-task GANs are capable of achieving competitive performance.
arXiv Detail & Related papers (2020-11-29T04:12:16Z) - Joint Object Contour Points and Semantics for Instance Segmentation [1.2117737635879038]
We propose Mask Point R-CNN aiming at promoting the neural network's attention to the object boundary.
Specifically, we innovatively extend the original human keypoint detection task to the contour point detection of any object.
As a consequence, the model will be more sensitive to the edges of the object and can capture more geometric features.
arXiv Detail & Related papers (2020-08-02T11:11:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.