Lens-free Optical Detection of Thermal Motion of a Sub-millimeter Sphere
Diamagnetically Levitated in High Vacuum
- URL: http://arxiv.org/abs/2105.13555v1
- Date: Fri, 28 May 2021 02:22:56 GMT
- Title: Lens-free Optical Detection of Thermal Motion of a Sub-millimeter Sphere
Diamagnetically Levitated in High Vacuum
- Authors: Fang Xiong, Peiran Yin, Tong Wu, Han Xie, Rui Li, Yingchun Leng, Yanan
Li, Changkui Duan, Xi Kong, Pu Huang and Jiangfeng Du
- Abstract summary: We propose a lens-free optical detection scheme, which can be used to detect the motion of a millimeter or sub-millimeter levitated oscillator.
Based on this system, an estimated acceleration sensitivity of $9.7 times 10-10rm g/sqrtHz$ is achieved, which is more than one order improvement over the best value reported by the levitated mechanical system.
This result is expected to have potential applications in the study of exotic interactions in the millimeter or sub-millimeter range and the realization of compact gravimeter and accelerometer.
- Score: 18.549920524271364
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Levitated oscillators with millimeter or sub-millimeter size are particularly
attractive due to their potential role in studying various fundamental problems
and practical applications. One of the crucial issues towards these goals is to
achieve efficient measurements of oscillator motion, while this remains a
challenge. Here we theoretically propose a lens-free optical detection scheme,
which can be used to detect the motion of a millimeter or sub-millimeter
levitated oscillator with a measurement efficiency close to the standard
quantum limit with a modest optical power. We demonstrate experimentally this
scheme on a 0.5 mm diameter micro-sphere that is diamagnetically levitated
under high vacuum and room temperature, and the thermal motion is detected with
high precision. Based on this system, an estimated acceleration sensitivity of
$9.7 \times 10^{-10}\rm g/\sqrt{Hz}$ is achieved, which is more than one order
improvement over the best value reported by the levitated mechanical system.
Due to the stability of the system, the minimum resolved acceleration of
$3.5\times 10^{-12}\rm g$ is reached with measurement times of $10^5$ s. This
result is expected to have potential applications in the study of exotic
interactions in the millimeter or sub-millimeter range and the realization of
compact gravimeter and accelerometer.
Related papers
- A High-Finesse Suspended Interferometric Sensor for Macroscopic Quantum Mechanics with Femtometre Sensitivity [0.0]
We present an interferometric sensor for investigating macroscopic quantum mechanics on a table-top scale.
We achieve a peak sensitivity of SI0.5fmasd in the acoustic frequency band, limited by the readout noise.
Such a sensor can eventually be utilised for demonstrating macroscopic entanglement and testing semi-classical and quantum gravity models.
arXiv Detail & Related papers (2024-02-01T18:05:24Z) - Phononically shielded photonic-crystal mirror membranes for cavity
quantum optomechanics [48.7576911714538]
We present a highly reflective, sub-wavelength-thick membrane resonator featuring high mechanical quality factor.
We construct a Fabry-Perot-type optical cavity, with the membrane forming one terminating mirror.
We demonstrate optomechanical sideband cooling to mK-mode temperatures, starting from room temperature.
arXiv Detail & Related papers (2022-12-23T04:53:04Z) - A background-free optically levitated charge sensor [50.591267188664666]
We introduce a new technique to model and eliminate dipole moment interactions limiting the performance of sensors employing levitated objects.
As a demonstration, this is applied to the search for unknown charges of a magnitude much below that of an electron.
As a by-product of the technique, the electromagnetic properties of the levitated objects can also be measured on an individual basis.
arXiv Detail & Related papers (2021-12-20T08:16:28Z) - Magneto Optical Sensing beyond the Shot Noise Limit [0.2446672595462589]
We propose a truncated nonlinear interferometric readout for low-temperature magneto-optical Kerr effect measurements.
We show that 10 $textnrad/sqrttextHz$ sensitivity is achievable with optical power as small as 1 $mu$W.
arXiv Detail & Related papers (2021-08-03T01:53:46Z) - A Compact Cold-Atom Interferometer with a High Data-Rate Grating
Magneto-Optical Trap and a Photonic-Integrated-Circuit-Compatible Laser
System [2.0825528981383505]
Extreme miniaturization of a cold-atom interferometer accelerometer requires the development of novel technologies and architectures for the interferometer subsystems.
We develop a custom, compact titanium vacuum package containing a microfabricated grating chip for a tetrahedral grating magneto-optical trap (GMOT) using a single cooling beam.
In a compact sensor head containing the vacuum package, sub-Doppler cooling in the GMOT produces 15 uK temperatures, and the GMOT can operate at a 20 Hz data rate.
arXiv Detail & Related papers (2021-07-10T08:35:47Z) - Continuous-Wave Frequency Upconversion with a Molecular Optomechanical
Nanocavity [46.43254474406406]
We use molecular cavity optomechanics to demonstrate upconversion of sub-microwatt continuous-wave signals at $sim$32THz into the visible domain at ambient conditions.
The device consists in a plasmonic nanocavity hosting a small number of molecules. The incoming field resonantly drives a collective molecular vibration, which imprints an optomechanical modulation on a visible pump laser.
arXiv Detail & Related papers (2021-07-07T06:23:14Z) - Mechanical dissipation below 1$\mu$Hz with a cryogenic
diamagnetic-levitated micro-oscillator [16.2941358519469]
We report a diamagnetic-levitated micro-mechanical oscillator operating at a low temperature of 3K with measured dissipation as low as 0.59 $mu$Hz.
The achieved dissipation is the lowest in micro- and nano-mechanical systems to date.
arXiv Detail & Related papers (2020-08-18T14:05:59Z) - High-Frequency Gravitational-Wave Detection Using a Chiral Resonant
Mechanical Element and a Short Unstable Optical Cavity [59.66860395002946]
We suggest the measurement of the twist of a chiral mechanical element induced by a gravitational wave.
The induced twist rotates a flat optical mirror on top of this chiral element, leading to the deflection of an incident laser beam.
We estimate a gravitational wave strain sensitivity between 10-21/sqrtHz and 10-23/sqrtHz at around 10 kHz frequency.
arXiv Detail & Related papers (2020-07-15T20:09:43Z) - Gravity Probe Spin: Prospects for measuring general-relativistic
precession of intrinsic spin using a ferromagnetic gyroscope [51.51258642763384]
An experimental test at the intersection of quantum physics and general relativity is proposed.
The behavior of intrinsic spin in spacetime is an experimentally open question.
A measurement is possible by using mm-scale ferromagnetic gyroscopes in orbit around the Earth.
arXiv Detail & Related papers (2020-06-16T17:18:44Z) - Force and acceleration sensing with optically levitated nanogram masses
at microkelvin temperatures [57.72546394254112]
This paper demonstrates cooling of the center-of-mass motion of 10 $mu$m-diameter optically levitated silica spheres to an effective temperature of $50pm22 mu$K.
It is shown that under these conditions the spheres remain stably trapped at pressures of $sim 10-7$ mbar with no active cooling for periods longer than a day.
arXiv Detail & Related papers (2020-01-29T16:20:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.