Controllable Abstractive Dialogue Summarization with Sketch Supervision
- URL: http://arxiv.org/abs/2105.14064v1
- Date: Fri, 28 May 2021 19:05:36 GMT
- Title: Controllable Abstractive Dialogue Summarization with Sketch Supervision
- Authors: Chien-Sheng Wu and Linqing Liu and Wenhao Liu and Pontus Stenetorp and
Caiming Xiong
- Abstract summary: Our model achieves state-of-the-art performance on the largest dialogue summarization corpus SAMSum, with as high as 50.79 in ROUGE-L score.
- Score: 56.59357883827276
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we aim to improve abstractive dialogue summarization quality
and, at the same time, enable granularity control. Our model has two primary
components and stages: 1) a two-stage generation strategy that generates a
preliminary summary sketch serving as the basis for the final summary. This
summary sketch provides a weakly supervised signal in the form of
pseudo-labeled interrogative pronoun categories and key phrases extracted using
a constituency parser. 2) A simple strategy to control the granularity of the
final summary, in that our model can automatically determine or control the
number of generated summary sentences for a given dialogue by predicting and
highlighting different text spans from the source text. Our model achieves
state-of-the-art performance on the largest dialogue summarization corpus
SAMSum, with as high as 50.79 in ROUGE-L score. In addition, we conduct a case
study and show competitive human evaluation results and controllability to
human-annotated summaries.
Related papers
- A Modular Approach for Multimodal Summarization of TV Shows [55.20132267309382]
We present a modular approach where separate components perform specialized sub-tasks.
Our modules involve detecting scene boundaries, reordering scenes so as to minimize the number of cuts between different events, converting visual information to text, summarizing the dialogue in each scene, and fusing the scene summaries into a final summary for the entire episode.
We also present a new metric, PRISMA, to measure both precision and recall of generated summaries, which we decompose into atomic facts.
arXiv Detail & Related papers (2024-03-06T16:10:01Z) - SummIt: Iterative Text Summarization via ChatGPT [12.966825834765814]
We propose SummIt, an iterative text summarization framework based on large language models like ChatGPT.
Our framework enables the model to refine the generated summary iteratively through self-evaluation and feedback.
We also conduct a human evaluation to validate the effectiveness of the iterative refinements and identify a potential issue of over-correction.
arXiv Detail & Related papers (2023-05-24T07:40:06Z) - DIONYSUS: A Pre-trained Model for Low-Resource Dialogue Summarization [127.714919036388]
DIONYSUS is a pre-trained encoder-decoder model for summarizing dialogues in any new domain.
Our experiments show that DIONYSUS outperforms existing methods on six datasets.
arXiv Detail & Related papers (2022-12-20T06:21:21Z) - Enhancing Semantic Understanding with Self-supervised Methods for
Abstractive Dialogue Summarization [4.226093500082746]
We introduce self-supervised methods to compensate shortcomings to train a dialogue summarization model.
Our principle is to detect incoherent information flows using pretext dialogue text to enhance BERT's ability to contextualize the dialogue text representations.
arXiv Detail & Related papers (2022-09-01T07:51:46Z) - SNaC: Coherence Error Detection for Narrative Summarization [73.48220043216087]
We introduce SNaC, a narrative coherence evaluation framework rooted in fine-grained annotations for long summaries.
We develop a taxonomy of coherence errors in generated narrative summaries and collect span-level annotations for 6.6k sentences across 150 book and movie screenplay summaries.
Our work provides the first characterization of coherence errors generated by state-of-the-art summarization models and a protocol for eliciting coherence judgments from crowd annotators.
arXiv Detail & Related papers (2022-05-19T16:01:47Z) - Summarize, Outline, and Elaborate: Long-Text Generation via Hierarchical
Supervision from Extractive Summaries [46.183289748907804]
We propose SOE, a pipelined system that outlines, outlining and elaborating for long text generation.
SOE produces long texts with significantly better quality, along with faster convergence speed.
arXiv Detail & Related papers (2020-10-14T13:22:20Z) - Multi-View Sequence-to-Sequence Models with Conversational Structure for
Abstractive Dialogue Summarization [72.54873655114844]
Text summarization is one of the most challenging and interesting problems in NLP.
This work proposes a multi-view sequence-to-sequence model by first extracting conversational structures of unstructured daily chats from different views to represent conversations.
Experiments on a large-scale dialogue summarization corpus demonstrated that our methods significantly outperformed previous state-of-the-art models via both automatic evaluations and human judgment.
arXiv Detail & Related papers (2020-10-04T20:12:44Z) - Unsupervised Abstractive Dialogue Summarization for Tete-a-Tetes [49.901984490961624]
We propose the first unsupervised abstractive dialogue summarization model for tete-a-tetes (SuTaT)
SuTaT consists of a conditional generative module and two unsupervised summarization modules.
Experimental results show that SuTaT is superior on unsupervised dialogue summarization for both automatic and human evaluations.
arXiv Detail & Related papers (2020-09-15T03:27:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.