SummIt: Iterative Text Summarization via ChatGPT
- URL: http://arxiv.org/abs/2305.14835v2
- Date: Mon, 9 Oct 2023 07:26:40 GMT
- Title: SummIt: Iterative Text Summarization via ChatGPT
- Authors: Haopeng Zhang, Xiao Liu, Jiawei Zhang
- Abstract summary: We propose SummIt, an iterative text summarization framework based on large language models like ChatGPT.
Our framework enables the model to refine the generated summary iteratively through self-evaluation and feedback.
We also conduct a human evaluation to validate the effectiveness of the iterative refinements and identify a potential issue of over-correction.
- Score: 12.966825834765814
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Text summarization systems have made significant progress in recent years,
but typically generate summaries in one single step. However, the one-shot
summarization setting is sometimes inadequate, as the generated summary may
contain hallucinations or overlook essential details related to the reader's
interests. This paper addresses this limitation by proposing SummIt, an
iterative text summarization framework based on large language models like
ChatGPT. Our framework enables the model to refine the generated summary
iteratively through self-evaluation and feedback, resembling humans' iterative
process when drafting and revising summaries. Furthermore, we explore the
potential benefits of integrating knowledge and topic extractors into the
framework to enhance summary faithfulness and controllability. We automatically
evaluate the performance of our framework on three benchmark summarization
datasets. We also conduct a human evaluation to validate the effectiveness of
the iterative refinements and identify a potential issue of over-correction.
Related papers
- Write Summary Step-by-Step: A Pilot Study of Stepwise Summarization [48.57273563299046]
We propose the task of Stepwise Summarization, which aims to generate a new appended summary each time a new document is proposed.
The appended summary should not only summarize the newly added content but also be coherent with the previous summary.
We show that SSG achieves state-of-the-art performance in terms of both automatic metrics and human evaluations.
arXiv Detail & Related papers (2024-06-08T05:37:26Z) - Factually Consistent Summarization via Reinforcement Learning with
Textual Entailment Feedback [57.816210168909286]
We leverage recent progress on textual entailment models to address this problem for abstractive summarization systems.
We use reinforcement learning with reference-free, textual entailment rewards to optimize for factual consistency.
Our results, according to both automatic metrics and human evaluation, show that our method considerably improves the faithfulness, salience, and conciseness of the generated summaries.
arXiv Detail & Related papers (2023-05-31T21:04:04Z) - Towards Interpretable Summary Evaluation via Allocation of Contextual
Embeddings to Reference Text Topics [1.5749416770494706]
The multifaceted interpretable summary evaluation method (MISEM) is based on allocation of a summary's contextual token embeddings to semantic topics identified in the reference text.
MISEM achieves a promising.404 Pearson correlation with human judgment on the TAC'08 dataset.
arXiv Detail & Related papers (2022-10-25T17:09:08Z) - A General Contextualized Rewriting Framework for Text Summarization [15.311467109946571]
Exiting rewriting systems take each extractive sentence as the only input, which is relatively focused but can lose necessary background knowledge and discourse context.
We formalize contextualized rewriting as a seq2seq with group-tag alignments, identifying extractive sentences through content-based addressing.
Results show that our approach significantly outperforms non-contextualized rewriting systems without requiring reinforcement learning.
arXiv Detail & Related papers (2022-07-13T03:55:57Z) - SNaC: Coherence Error Detection for Narrative Summarization [73.48220043216087]
We introduce SNaC, a narrative coherence evaluation framework rooted in fine-grained annotations for long summaries.
We develop a taxonomy of coherence errors in generated narrative summaries and collect span-level annotations for 6.6k sentences across 150 book and movie screenplay summaries.
Our work provides the first characterization of coherence errors generated by state-of-the-art summarization models and a protocol for eliciting coherence judgments from crowd annotators.
arXiv Detail & Related papers (2022-05-19T16:01:47Z) - RetrievalSum: A Retrieval Enhanced Framework for Abstractive
Summarization [25.434558112121778]
We propose a novel retrieval enhanced abstractive summarization framework consisting of a dense Retriever and a Summarizer.
We validate our method on a wide range of summarization datasets across multiple domains and two backbone models: BERT and BART.
Results show that our framework obtains significant improvement by 1.384.66 in ROUGE-1 score when compared with the powerful pre-trained models.
arXiv Detail & Related papers (2021-09-16T12:52:48Z) - Controllable Abstractive Dialogue Summarization with Sketch Supervision [56.59357883827276]
Our model achieves state-of-the-art performance on the largest dialogue summarization corpus SAMSum, with as high as 50.79 in ROUGE-L score.
arXiv Detail & Related papers (2021-05-28T19:05:36Z) - Topic-Guided Abstractive Text Summarization: a Joint Learning Approach [19.623946402970933]
We introduce a new approach for abstractive text summarization, Topic-Guided Abstractive Summarization.
The idea is to incorporate neural topic modeling with a Transformer-based sequence-to-sequence (seq2seq) model in a joint learning framework.
arXiv Detail & Related papers (2020-10-20T14:45:25Z) - Multi-Fact Correction in Abstractive Text Summarization [98.27031108197944]
Span-Fact is a suite of two factual correction models that leverages knowledge learned from question answering models to make corrections in system-generated summaries via span selection.
Our models employ single or multi-masking strategies to either iteratively or auto-regressively replace entities in order to ensure semantic consistency w.r.t. the source text.
Experiments show that our models significantly boost the factual consistency of system-generated summaries without sacrificing summary quality in terms of both automatic metrics and human evaluation.
arXiv Detail & Related papers (2020-10-06T02:51:02Z) - Enhancing Factual Consistency of Abstractive Summarization [57.67609672082137]
We propose a fact-aware summarization model FASum to extract and integrate factual relations into the summary generation process.
We then design a factual corrector model FC to automatically correct factual errors from summaries generated by existing systems.
arXiv Detail & Related papers (2020-03-19T07:36:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.