論文の概要: NeuralLog: Natural Language Inference with Joint Neural and Logical
Reasoning
- arxiv url: http://arxiv.org/abs/2105.14167v1
- Date: Sat, 29 May 2021 01:02:40 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-05 22:23:16.883740
- Title: NeuralLog: Natural Language Inference with Joint Neural and Logical
Reasoning
- Title(参考訳): NeuralLog: ニューラルネットワークと論理推論を組み合わせた自然言語推論
- Authors: Zeming Chen, Qiyue Gao, Lawrence S. Moss
- Abstract要約: 本稿では,単調性に基づく論理推論エンジンと,フレーズアライメントのためのニューラルネットワーク言語モデルの両方を利用するNeuralLogという推論フレームワークを提案する。
我々のフレームワークは,NLIタスクを古典的な探索問題としてモデル化し,ビーム探索アルゴリズムを用いて最適な推論経路を探索する。
実験により,我々のジョイントロジックとニューラル推論システムがNLIタスクの精度を改善し,SICKデータセットとMEDデータセットの最先端の精度を実現することが示された。
- 参考スコア(独自算出の注目度): 6.795509403707242
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning (DL) based language models achieve high performance on various
benchmarks for Natural Language Inference (NLI). And at this time, symbolic
approaches to NLI are receiving less attention. Both approaches (symbolic and
DL) have their advantages and weaknesses. However, currently, no method
combines them in a system to solve the task of NLI. To merge symbolic and deep
learning methods, we propose an inference framework called NeuralLog, which
utilizes both a monotonicity-based logical inference engine and a neural
network language model for phrase alignment. Our framework models the NLI task
as a classic search problem and uses the beam search algorithm to search for
optimal inference paths. Experiments show that our joint logic and neural
inference system improves accuracy on the NLI task and can achieve state-of-art
accuracy on the SICK and MED datasets.
- Abstract(参考訳): ディープラーニング(DL)ベースの言語モデルは、自然言語推論(NLI)の様々なベンチマークで高いパフォーマンスを達成する。
そしてこの頃、NLIに対する象徴的なアプローチは、あまり注目されていない。
両者のアプローチ(シンボリックとDL)には長所と短所がある。
しかし、現在、NLIの課題を解決するシステムにそれらを組み合わせている方法は存在しない。
シンボリックとディープラーニングを融合するために,単調性に基づく論理推論エンジンと,句アライメントのためのニューラルネットワーク言語モデルを組み合わせた,neurallogと呼ばれる推論フレームワークを提案する。
我々のフレームワークはNLIタスクを古典的な探索問題としてモデル化し、ビーム探索アルゴリズムを用いて最適な推論経路を探索する。
実験により,我々のジョイントロジックとニューラル推論システムがNLIタスクの精度を改善し,SICKおよびMEDデータセットの最先端の精度を実現することが示された。
関連論文リスト
- Training Neural Networks as Recognizers of Formal Languages [87.06906286950438]
形式言語理論は、特に認識者に関するものである。
代わりに、非公式な意味でのみ類似したプロキシタスクを使用するのが一般的である。
ニューラルネットワークを文字列のバイナリ分類器として直接訓練し評価することで、このミスマッチを補正する。
論文 参考訳(メタデータ) (2024-11-11T16:33:25Z) - DeepDFA: Automata Learning through Neural Probabilistic Relaxations [2.3326951882644553]
本稿では,決定論的有限オートマタ(DFA)をトレースから識別する新しい手法であるDeepDFAを紹介する。
DFAとリカレントニューラルネットワーク(RNN)の確率的緩和にインスパイアされた当社のモデルは、複雑性の低減とトレーニング効率の向上とともに、トレーニング後の解釈可能性を提供する。
論文 参考訳(メタデータ) (2024-08-16T09:30:36Z) - NeuroPrune: A Neuro-inspired Topological Sparse Training Algorithm for Large Language Models [35.10729451729596]
自然言語処理(NLP)におけるトランスフォーマーベース言語モデルの普及
しかし、高価なトレーニングや推論は、その適用性に重大な障害となる。
脳神経ネットワークにインスパイアされた我々は、ネットワークトポロジーのレンズを通してスパーシティアプローチを探索する。
論文 参考訳(メタデータ) (2024-02-28T22:21:47Z) - Learning Signal Temporal Logic through Neural Network for Interpretable
Classification [13.829082181692872]
本稿では時系列行動の分類のための説明可能なニューラルネットワーク・シンボリック・フレームワークを提案する。
提案手法の計算効率, コンパクト性, 解釈可能性について, シナリオの駆動と海軍の監視事例研究を通じて実証する。
論文 参考訳(メタデータ) (2022-10-04T21:11:54Z) - Reinforcement Learning with External Knowledge by using Logical Neural
Networks [67.46162586940905]
論理ニューラルネットワーク(LNN)と呼ばれる最近のニューラルシンボリックフレームワークは、ニューラルネットワークとシンボリックロジックの両方のキープロパティを同時に提供することができる。
外部知識ソースからのモデルフリー強化学習を可能にする統合手法を提案する。
論文 参考訳(メタデータ) (2021-03-03T12:34:59Z) - NSL: Hybrid Interpretable Learning From Noisy Raw Data [66.15862011405882]
本稿では,ラベル付き非構造データから解釈可能なルールを学習するニューラルシンボリック学習フレームワークNSLを提案する。
NSLは、機能抽出のためのトレーニング済みニューラルネットワークと、解集合セマンティクスに基づくルール学習のための最先端のILPシステムであるFastLASを組み合わせる。
NSLは、MNISTデータから堅牢なルールを学び、ニューラルネットワークやランダムフォレストベースラインと比較して、比較または優れた精度を達成できることを実証します。
論文 参考訳(メタデータ) (2020-12-09T13:02:44Z) - A journey in ESN and LSTM visualisations on a language task [77.34726150561087]
我々は,CSL(Cross-Situationnal Learning)タスクでESNとLSTMを訓練した。
その結果, 性能比較, 内部力学解析, 潜伏空間の可視化の3種類が得られた。
論文 参考訳(メタデータ) (2020-12-03T08:32:01Z) - Beyond Graph Neural Networks with Lifted Relational Neural Networks [14.63152363481139]
我々は,Lfted Neural Networks の言語に基づく宣言型微分可能プログラミングフレームワークを実演する。
小さなパラメータ化プログラムは学習を符号化するために使用される。
このアイデアは、様々な高度なニューラルネットワークの効率的な符号化にどのように使用できるかを示す。
論文 参考訳(メタデータ) (2020-07-13T10:10:58Z) - Closed Loop Neural-Symbolic Learning via Integrating Neural Perception,
Grammar Parsing, and Symbolic Reasoning [134.77207192945053]
従来の手法は強化学習アプローチを用いてニューラルシンボリックモデルを学ぶ。
我々は,脳神経知覚と記号的推論を橋渡しする前に,textbfgrammarモデルをテキストシンボリックとして導入する。
本稿では,トップダウンのヒューマンライクな学習手順を模倣して誤りを伝播する新しいtextbfback-searchアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-11T17:42:49Z) - Logical Natural Language Generation from Open-Domain Tables [107.04385677577862]
本稿では,その事実に関連付けられた自然言語文をモデルで生成するタスクを提案する。
提案した論理的 NLG 問題の研究を容易にするために,幅広い論理的・記号的推論を特徴とする既存の TabFact データセットcitechen 2019tabfact を用いる。
新しいタスクは、シーケンス順序と論理順序のミスマッチのため、既存のモノトニック生成フレームワークに課題をもたらす。
論文 参考訳(メタデータ) (2020-04-22T06:03:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。