論文の概要: The Definitions of Interpretability and Learning of Interpretable Models
- arxiv url: http://arxiv.org/abs/2105.14171v1
- Date: Sat, 29 May 2021 01:44:12 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-01 16:54:40.986934
- Title: The Definitions of Interpretability and Learning of Interpretable Models
- Title(参考訳): 解釈可能性の定義と解釈可能なモデルの学習
- Authors: Weishen Pan, Changshui Zhang
- Abstract要約: 人間の解釈可能なモデルに対する数学的定義を提案する。
予測モデルが人間の認識システムによって解釈される場合、予測モデルは完全な人間解釈モデルとして定義される。
- 参考スコア(独自算出の注目度): 42.22982369082474
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As machine learning algorithms getting adopted in an ever-increasing number
of applications, interpretation has emerged as a crucial desideratum. In this
paper, we propose a mathematical definition for the human-interpretable model.
In particular, we define interpretability between two information process
systems. If a prediction model is interpretable by a human recognition system
based on the above interpretability definition, the prediction model is defined
as a completely human-interpretable model. We further design a practical
framework to train a completely human-interpretable model by user interactions.
Experiments on image datasets show the advantages of our proposed model in two
aspects: 1) The completely human-interpretable model can provide an entire
decision-making process that is human-understandable; 2) The completely
human-interpretable model is more robust against adversarial attacks.
- Abstract(参考訳): 機械学習アルゴリズムがますます多くのアプリケーションに採用されるにつれて、解釈は決定的なデシプラタムとして現れてきた。
本稿では,人間解釈モデルに対する数学的定義を提案する。
特に,2つの情報処理システム間の解釈可能性を定義する。
上記解釈可能性定義に基づく人間の認識システムによって予測モデルが解釈可能であれば、予測モデルは、完全に人間解釈可能なモデルとして定義される。
ユーザインタラクションによって完全に人間解釈可能なモデルをトレーニングするための実用的なフレームワークを更に設計する。
画像データセットにおける実験は,提案モデルの利点を2つの側面から示している。1) 完全に人間解釈可能なモデルは,人間の理解可能な意思決定プロセス全体を提供できる。
関連論文リスト
- Hard to Explain: On the Computational Hardness of In-Distribution Model Interpretation [0.9558392439655016]
機械学習(ML)モデルを解釈する能力はますます不可欠になりつつある。
近年の研究では、様々なモデルの意思決定を説明する計算複雑性を研究することにより、解釈可能性について正式に評価することが可能であることが示されている。
論文 参考訳(メタデータ) (2024-08-07T17:20:52Z) - Selecting Interpretability Techniques for Healthcare Machine Learning models [69.65384453064829]
医療では、いくつかの意思決定シナリオにおいて、医療専門家を支援するために解釈可能なアルゴリズムを採用することが追求されている。
本稿では, ポストホックとモデルベースという8つのアルゴリズムを概説する。
論文 参考訳(メタデータ) (2024-06-14T17:49:04Z) - On the Lack of Robust Interpretability of Neural Text Classifiers [14.685352584216757]
本研究では,事前学習したトランスフォーマーエンコーダをベースとしたニューラルテキスト分類器の解釈の堅牢性を評価する。
どちらのテストも、期待された行動から驚くほど逸脱しており、実践者が解釈から引き出す可能性のある洞察の程度について疑問を呈している。
論文 参考訳(メタデータ) (2021-06-08T18:31:02Z) - Model Learning with Personalized Interpretability Estimation (ML-PIE) [2.862606936691229]
ハイステークアプリケーションは、AI生成モデルを解釈可能にする必要がある。
解釈可能なモデルの合成のための現在のアルゴリズムは、目的や正規化項に依存する。
本稿では,ユーザ向けにカスタマイズされたモデルの合成手法を提案する。
論文 参考訳(メタデータ) (2021-04-13T09:47:48Z) - Interpretable Deep Learning: Interpretations, Interpretability,
Trustworthiness, and Beyond [49.93153180169685]
一般に混同される2つの基本的な概念(解釈と解釈可能性)を紹介・明らかにする。
我々は,新しい分類法を提案することにより,異なる視点から,最近のいくつかの解釈アルゴリズムの設計を詳細に述べる。
信頼される」解釈アルゴリズムを用いてモデルの解釈可能性を評価する上での既存の作業をまとめる。
論文 参考訳(メタデータ) (2021-03-19T08:40:30Z) - Distilling Interpretable Models into Human-Readable Code [71.11328360614479]
人間可読性は機械学習モデル解釈可能性にとって重要で望ましい標準である。
従来の方法を用いて解釈可能なモデルを訓練し,それを簡潔で可読なコードに抽出する。
本稿では,幅広いユースケースで効率的に,確実に高品質な結果を生成する分別線形曲線フィッティングアルゴリズムについて述べる。
論文 参考訳(メタデータ) (2021-01-21T01:46:36Z) - To what extent do human explanations of model behavior align with actual
model behavior? [91.67905128825402]
モデル推論決定の人間による説明が、モデルが実際にこれらの決定を下す方法と一致する程度を調べた。
自然言語の人間の説明が入力語に対するモデル感度とどのように一致するかを定量化する2つのアライメント指標を定義した。
モデルと人間の説明との整合は、NLI上のモデルの精度によって予測されないことが判明した。
論文 参考訳(メタデータ) (2020-12-24T17:40:06Z) - Human-interpretable model explainability on high-dimensional data [8.574682463936007]
2つのモジュールからなる高次元データに対する人間解釈可能な説明可能性のためのフレームワークを提案する。
まず、データの生の次元性を減らし、人間の解釈可能性を確保するために、意味的に意味のある潜在表現を適用する。
第2に、モデルに依存しないこれらの潜在的特徴を扱うために、Shapleyパラダイムを適用し、理論的に制御され、計算的に抽出可能なモデル説明をもたらす。
論文 参考訳(メタデータ) (2020-10-14T20:06:28Z) - Are Visual Explanations Useful? A Case Study in Model-in-the-Loop
Prediction [49.254162397086006]
画像に基づく年齢予測課題における視覚的満足度に基づく説明について検討する。
モデル予測の提示により,人間の精度が向上することが判明した。
しかし、様々な種類の説明は、人間の正確さやモデルの信頼を著しく変えることができない。
論文 参考訳(メタデータ) (2020-07-23T20:39:40Z) - Learning a Formula of Interpretability to Learn Interpretable Formulas [1.7616042687330642]
人間の解釈可能性の非対象プロキシのMLモデルが人間のフィードバックから学習可能であることを示す。
進化的シンボリック回帰について示す。
我々のアプローチは、次世代の解釈可能な(進化的な)MLアルゴリズムの設計のための重要なステップストーンである。
論文 参考訳(メタデータ) (2020-04-23T13:59:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。