論文の概要: Classifying States of Cooking Objects Using Convolutional Neural Network
- arxiv url: http://arxiv.org/abs/2105.14196v1
- Date: Fri, 30 Apr 2021 22:26:40 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-06 11:07:43.728606
- Title: Classifying States of Cooking Objects Using Convolutional Neural Network
- Title(参考訳): 畳み込みニューラルネットワークを用いた調理物体の分類
- Authors: Qi Zheng
- Abstract要約: 主な目的は、調理プロセスをより簡単で安全にし、人間の福祉を創ることである。
ロボットは調理環境を理解し,特に調理対象の状態を正確に認識することが重要である。
このプロジェクトでは、料理物の状態をスクラッチから分類するための堅牢な深層畳み込みニューラルネットワークを設計するために、実験の一部が実施された。
- 参考スコア(独自算出の注目度): 6.127963013089406
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automated cooking machine is a goal for the future. The main aim is to make
the cooking process easier, safer, and create human welfare. To allow robots to
accurately perform the cooking activities, it is important for them to
understand the cooking environment and recognize the objects, especially
correctly identifying the state of the cooking objects. This will significantly
improve the correctness of the following cooking recipes. In this project,
several parts of the experiment were conducted to design a robust deep
convolutional neural network for classifying the state of the cooking objects
from scratch. The model is evaluated by using various techniques, such as
adjusting architecture layers, tuning key hyperparameters, and using different
optimization techniques to maximize the accuracy of state classification.
- Abstract(参考訳): 自動調理機は将来の目標である。
主な目的は、調理プロセスを簡単かつ安全にし、人間の福祉を創造することである。
ロボットが調理活動を正確に行うためには,調理環境を理解し,その対象,特に調理対象の状態を正確に識別することが重要である。
これにより、以下の調理レシピの正確性が著しく向上する。
このプロジェクトでは、料理物の状態をスクラッチから分類するための堅牢な深層畳み込みニューラルネットワークを設計するために、実験の一部が実施された。
このモデルは、アーキテクチャ層の調整、キーハイパーパラメータのチューニング、状態分類の精度を最大化するために異なる最適化技術を用いて評価される。
関連論文リスト
- Continuous Object State Recognition for Cooking Robots Using Pre-Trained
Vision-Language Models and Black-box Optimization [18.41474014665171]
本稿では,ロボットを調理する際の食品の状態変化を音声言語で認識する手法を提案する。
各テキストの重み付けを調整することで、より正確で堅牢な連続状態認識を実現することができることを示す。
論文 参考訳(メタデータ) (2024-03-13T04:45:40Z) - FIRE: Food Image to REcipe generation [10.45344523054623]
フードコンピューティングは、食品画像のレシピ情報を自律的に生成できるエンドツーエンドのインテリジェントシステムを開発することを目的としている。
本稿では,食品コンピューティング分野におけるレシピ生成に適した新しい手法であるFIREを提案する。
本稿では、FIREと大規模言語モデルのプロンプトを統合することの恩恵を享受できる2つの実用的なアプリケーションを紹介する。
論文 参考訳(メタデータ) (2023-08-28T08:14:20Z) - Rethinking Cooking State Recognition with Vision Transformers [0.0]
料理状態認識タスクにおいて視覚変換器(ViT)アーキテクチャの自己保持機構を提案する。
提案したアプローチは、画像から得られたグローバルな健全な特徴をカプセル化するとともに、より大きなデータセットから得られた重みを利用する。
私たちのフレームワークの精度は94.3%で、最先端のフレームワークよりも大幅に優れています。
論文 参考訳(メタデータ) (2022-12-16T17:06:28Z) - Structured Vision-Language Pretraining for Computational Cooking [54.0571416522547]
Vision-Language PretrainingとFoundationモデルは、一般的なベンチマークでSoTAのパフォーマンスを達成するためのゴーツーレシピです。
本稿では,これらの手法を構造化テキストベースの計算料理タスクに活用することを提案する。
論文 参考訳(メタデータ) (2022-12-08T13:37:17Z) - Counterfactual Recipe Generation: Exploring Compositional Generalization
in a Realistic Scenario [60.20197771545983]
本研究では,材料の変化に応じて基本レシピを変更するようモデルに依頼する,反現実的なレシピ生成タスクを設計する。
料理の知識を学習するモデルのために、中国語で大規模なレシピデータセットを収集する。
その結果、既存のモデルでは原文のスタイルを保ちながら素材の変更が困難であり、調整が必要なアクションを見逃すことがしばしばあった。
論文 参考訳(メタデータ) (2022-10-20T17:21:46Z) - Learning Structural Representations for Recipe Generation and Food
Retrieval [101.97397967958722]
本稿では,食品レシピ生成課題に取り組むために,構造認識ネットワーク(SGN)の新たな枠組みを提案する。
提案モデルは高品質でコヒーレントなレシピを作成でき、ベンチマークRecipe1Mデータセット上で最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2021-10-04T06:36:31Z) - Structure-Aware Generation Network for Recipe Generation from Images [142.047662926209]
食品画像と材料のみに基づいて調理指導を行うオープン・リサーチ・タスクについて検討する。
ターゲットレシピは長い段落であり、構造情報に関する注釈を持たない。
本稿では,食品レシピ生成課題に取り組むために,構造認識ネットワーク(SGN)の新たな枠組みを提案する。
論文 参考訳(メタデータ) (2020-09-02T10:54:25Z) - Multi-modal Cooking Workflow Construction for Food Recipes [147.4435186953995]
ワークフロー構築のための最初の大規模データセットであるMM-ReSを構築した。
本稿では、視覚情報とテキスト情報の両方を利用して調理ワークフローを構築するニューラルエンコーダデコーダモデルを提案する。
論文 参考訳(メタデータ) (2020-08-20T18:31:25Z) - Decomposing Generation Networks with Structure Prediction for Recipe
Generation [142.047662926209]
本稿では,構造予測を伴うDGN(Decomposing Generation Networks)を提案する。
具体的には,調理指導を複数のフェーズに分割し,各フェーズに異なるサブジェネレータを割り当てる。
提案手法は, (i) 大域的構造予測成分を用いてレシピ構造を学習し, (ii) 予測された構造に基づいてサブジェネレータ出力成分でレシピ相を生成するという2つの新しいアイデアを含む。
論文 参考訳(メタデータ) (2020-07-27T08:47:50Z) - Classification of Cuisines from Sequentially Structured Recipes [8.696042114987966]
料理の特徴に基づく料理の分類は 際立った問題です。
我々は、RecipeDBデータセット上のこれらの情報を考慮し、様々な分類手法を実装した。
最先端のRoBERTaモデルは、様々な分類モデルの中で73.30%の精度を示した。
論文 参考訳(メタデータ) (2020-04-26T05:40:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。