論文の概要: Grammar Accuracy Evaluation (GAE): Quantifiable Intrinsic Evaluation of
Machine Translation Models
- arxiv url: http://arxiv.org/abs/2105.14277v2
- Date: Tue, 1 Jun 2021 10:07:30 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-05 17:13:53.041532
- Title: Grammar Accuracy Evaluation (GAE): Quantifiable Intrinsic Evaluation of
Machine Translation Models
- Title(参考訳): 文法精度評価(gae) : 機械翻訳モデルの量的固有性評価
- Authors: Dojun Park, Youngjin Jang and Harksoo Kim
- Abstract要約: 本稿では,特定の評価基準を提供するための文法精度評価(GAE)を提案する。
BLEUとGAEによる機械翻訳の品質分析の結果,BLEUスコアは機械翻訳モデルの絶対性能を表すものではないことを確認した。
- 参考スコア(独自算出の注目度): 3.007949058551534
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Intrinsic evaluation by humans for the performance of natural language
generation models is conducted to overcome the fact that the quality of
generated sentences cannot be fully represented by only extrinsic evaluation.
Nevertheless, existing intrinsic evaluations have a large score deviation
according to the evaluator's criteria. In this paper, we propose Grammar
Accuracy Evaluation (GAE) that can provide specific evaluating criteria. As a
result of analyzing the quality of machine translation by BLEU and GAE, it was
confirmed that the BLEU score does not represent the absolute performance of
machine translation models and that GAE compensates for the shortcomings of
BLEU with a flexible evaluation on alternative synonyms and changes in sentence
structure.
- Abstract(参考訳): 自然言語生成モデルの性能評価のための人間による本質的評価は、生成文の品質が外部的な評価だけでは完全に表現できないという事実を克服するために行われる。
それにもかかわらず、既存の内在的評価は評価者の基準に応じて大きなスコア偏差を有する。
本稿では,特定の評価基準を提供するための文法精度評価(GAE)を提案する。
bleuとgaeによる機械翻訳の品質分析の結果、bleuスコアは機械翻訳モデルの絶対的性能を表わさないこと、およびgaeがbleuの欠点を補うことを確認し、代替同義語や文構造の変化を柔軟に評価した。
関連論文リスト
- The BiGGen Bench: A Principled Benchmark for Fine-grained Evaluation of Language Models with Language Models [94.31327813151208]
BiGGen Benchは、77のタスクにわたるLMの9つの異なる能力を徹底的に評価するために設計された、原則化された世代ベンチマークである。
BiGGen Benchの重要な特徴は、インスタンス固有の評価基準の使用であり、人間の評価のニュアンスな識別を忠実に反映している。
論文 参考訳(メタデータ) (2024-06-09T12:30:30Z) - xCOMET: Transparent Machine Translation Evaluation through Fine-grained
Error Detection [21.116517555282314]
xCOMETは、機械翻訳評価アプローチのギャップを埋めるために設計されたオープンソースの学習メトリクスである。
文レベルの評価とエラースパン検出機能を統合し、あらゆるタイプの評価で最先端のパフォーマンスを示す。
また,ストレステストによるロバストネス解析を行い,xCOMETは局所的な臨界誤差や幻覚を同定できることを示す。
論文 参考訳(メタデータ) (2023-10-16T15:03:14Z) - Calibrating LLM-Based Evaluator [92.17397504834825]
マルチステージで勾配のないアプローチであるAutoCalibrateを提案し,LLMに基づく評価器を人間の好みに合わせて調整・調整する。
人間の嗜好を明示的にモデル化する代わりに、まず暗黙的に人間のラベルに含めます。
複数のテキスト品質評価データセットに関する実験は、校正による専門家評価との相関性を大幅に改善したことを示す。
論文 参考訳(メタデータ) (2023-09-23T08:46:11Z) - Evaluation of really good grammatical error correction [0.0]
文法的誤り訂正(GEC)は、異なる目的を持つ様々なモデルを含んでいる。
従来の評価手法では、システム機能や目的を完全に把握できない。
論文 参考訳(メタデータ) (2023-08-17T13:45:35Z) - FLASK: Fine-grained Language Model Evaluation based on Alignment Skill Sets [69.91340332545094]
FLASKは、人間に基づく評価とモデルに基づく評価の両方のためのきめ細かい評価プロトコルである。
モデル性能の全体像を得るためには,評価の微粒化が重要であることを実験的に観察する。
論文 参考訳(メタデータ) (2023-07-20T14:56:35Z) - A New Evaluation Method: Evaluation Data and Metrics for Chinese Grammar
Error Correction [4.60495447017298]
同じ誤り訂正モデルの評価値は、異なる単語分割システムや異なる言語モデルの下で大きく変化する可能性がある。
本稿では,CGECの基準ベースと基準レスの2次元における3つの新しい評価指標を提案する。
論文 参考訳(メタデータ) (2022-04-30T09:40:04Z) - HOPE: A Task-Oriented and Human-Centric Evaluation Framework Using
Professional Post-Editing Towards More Effective MT Evaluation [0.0]
本研究では,機械翻訳出力のためのタスク指向・人間中心評価フレームワークHOPEを紹介する。
一般的に発生するエラーの種類は限られており、各翻訳ユニットにエラー重大度レベルを反映する誤差ペナルティポイント(EPP)の幾何学的進行を伴うスコアリングモデルを使用する。
このアプローチには、異なるシステムからの完全なMT出力を測定および比較する能力、品質に対する人間の認識を示す能力、MT出力を高品質にするために必要となる労力の即時見積、低コストで高速なアプリケーション、より高いIRRなど、いくつかの重要な利点がある。
論文 参考訳(メタデータ) (2021-12-27T18:47:43Z) - GO FIGURE: A Meta Evaluation of Factuality in Summarization [131.1087461486504]
本稿では,現実性評価指標を評価するメタ評価フレームワークGO FIGUREを紹介する。
10個の実測値のベンチマーク分析により、我々のフレームワークが堅牢で効率的な評価を提供することが明らかとなった。
また、QAメトリクスは、ドメイン間の事実性を測定する標準的なメトリクスよりも一般的に改善されているが、パフォーマンスは、質問を生成する方法に大きく依存していることも明らかにしている。
論文 参考訳(メタデータ) (2020-10-24T08:30:20Z) - Perception Score, A Learned Metric for Open-ended Text Generation
Evaluation [62.7690450616204]
本稿では,新しい,強力な学習ベース評価尺度を提案する。
本手法は,単語の重なり合いなどの評価基準にのみ焦点をあてるのではなく,生成の全体的な品質を測定し,一律に得点する。
論文 参考訳(メタデータ) (2020-08-07T10:48:40Z) - Tangled up in BLEU: Reevaluating the Evaluation of Automatic Machine
Translation Evaluation Metrics [64.88815792555451]
評価法は, 評価に用いる翻訳に非常に敏感であることを示す。
本研究では,人的判断に対する自動評価基準の下で,性能改善をしきい値にする方法を開発した。
論文 参考訳(メタデータ) (2020-06-11T09:12:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。