論文の概要: Applications of Epileptic Seizures Detection in Neuroimaging Modalities
Using Deep Learning Techniques: Methods, Challenges, and Future Works
- arxiv url: http://arxiv.org/abs/2105.14278v1
- Date: Sat, 29 May 2021 12:00:39 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-01 17:28:07.690085
- Title: Applications of Epileptic Seizures Detection in Neuroimaging Modalities
Using Deep Learning Techniques: Methods, Challenges, and Future Works
- Title(参考訳): 深層学習技術を用いた神経画像モダリティにおけるてんかん発作検出の応用:方法,課題,今後の課題
- Authors: Afshin Shoeibi, Navid Ghassemi, Marjane Khodatars, Mahboobeh Jafari,
Parisa Moridian, Roohallah Alizadehsani, Ali Khadem, Yinan Kong, Assef Zare,
Juan Manuel Gorriz, Javier Ram\'irez, Maryam Panahiazar, Abbas Khosravi,
Saeid Nahavandi
- Abstract要約: てんかん発作は、世界中の多くの人々に影響を及ぼす神経疾患の一種である。
専門医や神経学者は、様々な種類のてんかん発作を診断するために、構造的および機能的な神経画像モダリティを利用する。
てんかん発作の正確かつ迅速な診断を早める1つの方法は、人工知能(AI)と機能的および構造的ニューロイメージングモダリティに基づくコンピュータ支援診断システム(CADS)を採用することである。
- 参考スコア(独自算出の注目度): 12.393282115173387
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Epileptic seizures are a type of neurological disorder that affect many
people worldwide. Specialist physicians and neurologists take advantage of
structural and functional neuroimaging modalities to diagnose various types of
epileptic seizures. Neuroimaging modalities assist specialist physicians
considerably in analyzing brain tissue and the changes made in it. One method
to accelerate the accurate and fast diagnosis of epileptic seizures is to
employ computer aided diagnosis systems (CADS) based on artificial intelligence
(AI) and functional and structural neuroimaging modalities. AI encompasses a
variety of areas, and one of its branches is deep learning (DL). Not long ago,
and before the rise of DL algorithms, feature extraction was an essential part
of every conventional machine learning method, yet handcrafting features limit
these models' performances to the knowledge of system designers. DL methods
resolved this issue entirely by automating the feature extraction and
classification process; applications of these methods in many fields of
medicine, such as the diagnosis of epileptic seizures, have made notable
improvements. In this paper, a comprehensive overview of the types of DL
methods exploited to diagnose epileptic seizures from various neuroimaging
modalities has been studied. Additionally, rehabilitation systems and cloud
computing in epileptic seizures diagnosis applications have been exactly
investigated using various modalities.
- Abstract(参考訳): てんかん発作は、世界中の多くの人々に影響を及ぼす神経疾患の一種である。
専門医や神経学者は、様々な種類のてんかん発作を診断するために、構造的および機能的な神経画像モダリティを利用する。
神経画像のモダリティは、専門医が脳組織とその変化を分析するのに大いに役立つ。
てんかん発作の正確かつ迅速な診断を早める1つの方法は、人工知能(AI)と機能的および構造的ニューロイメージングモダリティに基づくコンピュータ支援診断システム(CADS)を採用することである。
AIは様々な分野を包含しており、その分野の1つがディープラーニング(DL)である。
dlアルゴリズムの登場以前は、機能抽出は従来の機械学習手法のすべてにおいて不可欠な部分であったが、手作り機能はこれらのモデルのパフォーマンスをシステム設計者の知識に制限していた。
DL法は特徴抽出と分類プロセスの自動化によってこの問題を完全に解決し、てんかん発作の診断などの医学分野におけるこれらの手法の適用により、顕著な改善がなされた。
本報告では, 各種神経画像からのてんかん発作の診断に用いたDL法の種類について概説する。
さらに, てんかん発作診断におけるリハビリテーションシステムとクラウドコンピューティングについて, 様々な手法を用いて正確に検討した。
関連論文リスト
- A Survey of Artificial Intelligence in Gait-Based Neurodegenerative Disease Diagnosis [51.07114445705692]
神経変性疾患(神経変性疾患、ND)は、伝統的に医学的診断とモニタリングのために広範囲の医療資源と人的努力を必要とする。
重要な疾患関連運動症状として、ヒトの歩行を利用して異なるNDを特徴づけることができる。
人工知能(AI)モデルの現在の進歩は、NDの識別と分類のための自動歩行分析を可能にする。
論文 参考訳(メタデータ) (2024-05-21T06:44:40Z) - MMGPL: Multimodal Medical Data Analysis with Graph Prompt Learning [31.21351373001379]
神経疾患の診断のための多モード大規模モデルの微調整過程におけるグラフプロンプトの学習による新しいプロンプト学習モデルを提案する。
具体的には、まずGPT-4を利用して、関連する疾患の概念を取得し、これらの概念とすべてのパッチのセマンティックな類似性を計算する。
第2に、各パッチと疾患関連概念のセマンティックな類似性に応じて、無関係パッチの重量を減少させる。
論文 参考訳(メタデータ) (2023-12-22T10:10:50Z) - UniBrain: Universal Brain MRI Diagnosis with Hierarchical
Knowledge-enhanced Pre-training [66.16134293168535]
我々はUniBrainと呼ばれるユニバーサル脳MRI診断のための階層的知識強化事前訓練フレームワークを提案する。
具体的には、UniBrainは、定期的な診断から24,770のイメージレポートペアの大規模なデータセットを活用する。
論文 参考訳(メタデータ) (2023-09-13T09:22:49Z) - fMRI from EEG is only Deep Learning away: the use of interpretable DL to
unravel EEG-fMRI relationships [68.8204255655161]
多チャンネル脳波データからいくつかの皮質下領域の活性を回復するための解釈可能な領域基底解を提案する。
我々は,皮質下核の血行動態信号の頭皮脳波予測の空間的・時間的パターンを復元する。
論文 参考訳(メタデータ) (2022-10-23T15:11:37Z) - NeuralSympCheck: A Symptom Checking and Disease Diagnostic Neural Model
with Logic Regularization [59.15047491202254]
症状検査システムは、患者に症状を問い合わせ、迅速で手頃な価格の医療評価を行う。
本稿では,論理正則化を用いたニューラルネットワークの教師付き学習に基づく新しい手法を提案する。
以上の結果から,本手法は診断回数や症状が大きい場合の診断精度において,最も優れた方法であることがわかった。
論文 参考訳(メタデータ) (2022-06-02T07:57:17Z) - SpineOne: A One-Stage Detection Framework for Degenerative Discs and
Vertebrae [54.751251046196494]
SpineOneと呼ばれる一段階検出フレームワークを提案し、MRIスライスから変性椎骨と椎骨を同時に局在化・分類する。
1)キーポイントの局所化と分類を促進するためのキーポイント・ヒートマップの新しい設計、2)ディスクと脊椎の表現をよりよく区別するためのアテンション・モジュールの使用、3)後期訓練段階における複数の学習目標を関連付けるための新しい勾配誘導客観的アソシエーション機構。
論文 参考訳(メタデータ) (2021-10-28T12:59:06Z) - Applications of Deep Learning Techniques for Automated Multiple
Sclerosis Detection Using Magnetic Resonance Imaging: A Review [11.505730390079645]
多発性硬化症(Multiple Sclerosis、MS)は、神経系の機能に有害な影響を与える人の視覚、感覚、運動の障害を引き起こす脳疾患である。
近年,MRIを用いたMSの正確な診断のために,人工知能(AI)に基づくコンピュータ支援診断システム(CADS)が提案されている。
本稿では,MRI のニューロイメージング・モダリティを用いた DL 技術を用いた自動MS診断法について概説する。
論文 参考訳(メタデータ) (2021-05-11T09:08:48Z) - Machine Learning Applications on Neuroimaging for Diagnosis and
Prognosis of Epilepsy: A Review [6.185653026582807]
てんかんの診断と予後の文脈におけるニューロイメージングと機械学習の相互作用を強調した。
本稿では,2段階構成法とエンドツーエンド法という2つの手法を用いて,ニューロイメージングデータに機械学習手法を適用する。
セグメンテーション、ローカライゼーション、横方向化タスクなど、てんかん性画像における機械学習タスクの詳細なレビューを行う。
論文 参考訳(メタデータ) (2021-02-05T18:39:12Z) - Review of Machine Learning Algorithms for Brain Stroke Diagnosis and
Prognosis by EEG Analysis [50.591267188664666]
ストローク(Strokes)は、アメリカ合衆国の成人障害の主要な原因である。
脳-コンピュータインタフェース(Brain-Computer Interfaces、BCI)は、患者の神経経路の回復または電子補綴器との効果的なコミュニケーションを支援する。
さまざまな機械学習技術とアルゴリズムをBCI技術と組み合わせることで、脳卒中治療にBCIを使うことは、有望で急速に拡大する分野であることを示している。
論文 参考訳(メタデータ) (2020-08-06T19:50:29Z) - Deep Learning for Neuroimaging-based Diagnosis and Rehabilitation of
Autism Spectrum Disorder: A Review [14.639115166647871]
人工知能(AI)技術は、医師が自動診断とリハビリテーションの手順を適用するのを助ける。
ASDの診断のための深層学習(DL)法は神経画像に基づくアプローチに焦点が当てられている。
本稿では,ASDを識別するためのDLネットワークを用いた研究について述べる。
論文 参考訳(メタデータ) (2020-07-02T17:49:19Z) - Epileptic Seizures Detection Using Deep Learning Techniques: A Review [11.545463604424697]
本研究では,ディープラーニング(DL)技術とニューロイメージングを用いたてんかん発作の自動検出に焦点を当てた。
脳波とMRIを用いたてんかんの診断法について述べる。
脳波とMRIを併用したDLを用いたてんかん自動発作の正確な検出の課題について論じる。
論文 参考訳(メタデータ) (2020-07-02T17:34:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。