Polygonal Point Set Tracking
- URL: http://arxiv.org/abs/2105.14584v1
- Date: Sun, 30 May 2021 17:12:36 GMT
- Title: Polygonal Point Set Tracking
- Authors: Gunhee Nam, Miran Heo, Seoung Wug Oh, Joon-Young Lee, Seon Joo Kim
- Abstract summary: We propose a novel learning-based polygonal point set tracking method.
Our goal is to track corresponding points on the target contour.
We present visual-effects applications of our method on part distortion and text mapping.
- Score: 50.445151155209246
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we propose a novel learning-based polygonal point set tracking
method. Compared to existing video object segmentation~(VOS) methods that
propagate pixel-wise object mask information, we propagate a polygonal point
set over frames.
Specifically, the set is defined as a subset of points in the target contour,
and our goal is to track corresponding points on the target contour. Those
outputs enable us to apply various visual effects such as motion tracking, part
deformation, and texture mapping. To this end, we propose a new method to track
the corresponding points between frames by the global-local alignment with
delicately designed losses and regularization terms. We also introduce a novel
learning strategy using synthetic and VOS datasets that makes it possible to
tackle the problem without developing the point correspondence dataset. Since
the existing datasets are not suitable to validate our method, we build a new
polygonal point set tracking dataset and demonstrate the superior performance
of our method over the baselines and existing contour-based VOS methods. In
addition, we present visual-effects applications of our method on part
distortion and text mapping.
Related papers
- Self-Supervised Scene Flow Estimation with Point-Voxel Fusion and Surface Representation [30.355128117680444]
Scene flow estimation aims to generate the 3D motion field of points between two consecutive frames of point clouds.
Existing point-based methods ignore the irregularity of point clouds and have difficulty capturing long-range dependencies.
We propose a point-voxel fusion method, where we utilize a voxel branch based on sparse grid attention and the shifted window strategy to capture long-range dependencies.
arXiv Detail & Related papers (2024-10-17T09:05:15Z) - Joint Dense-Point Representation for Contour-Aware Graph Segmentation [2.138299283227551]
We present a novel methodology that combines graph and dense segmentation techniques by jointly learning both point and pixel contour representations.
This addresses deficiencies in typical graph segmentation methods where misaligned objectives restrict the network from learning discriminative and contour features.
Our approach is validated on several Chest X-ray datasets, demonstrating clear improvements in segmentation stability and accuracy.
arXiv Detail & Related papers (2023-06-21T10:07:17Z) - Tracking by 3D Model Estimation of Unknown Objects in Videos [122.56499878291916]
We argue that this representation is limited and instead propose to guide and improve 2D tracking with an explicit object representation.
Our representation tackles a complex long-term dense correspondence problem between all 3D points on the object for all video frames.
The proposed optimization minimizes a novel loss function to estimate the best 3D shape, texture, and 6DoF pose.
arXiv Detail & Related papers (2023-04-13T11:32:36Z) - Hybrid Tracker with Pixel and Instance for Video Panoptic Segmentation [50.62685357414904]
Video Panoptic coefficient (VPS) aims to generate coherent panoptic segmentation and track the identities of all pixels across video frames.
We present HybridTracker, a lightweight and joint tracking model attempting to eliminate the limitations of the single tracker.
Comprehensive experiments show that HybridTracker achieves superior performance than state-of-the-art methods on Cityscapes-VPS and VIPER datasets.
arXiv Detail & Related papers (2022-03-02T16:21:55Z) - Learning point embedding for 3D data processing [2.12121796606941]
Current point-based methods are essentially spatial relationship processing networks.
Our architecture, PE-Net, learns the representation of point clouds in high-dimensional space.
Experiments show that PE-Net achieves the state-of-the-art performance in multiple challenging datasets.
arXiv Detail & Related papers (2021-07-19T00:25:28Z) - Weak Multi-View Supervision for Surface Mapping Estimation [0.9367260794056769]
We propose a weakly-supervised multi-view learning approach to learn category-specific surface mapping without dense annotations.
We learn the underlying surface geometry of common categories, such as human faces, cars, and airplanes, given instances from those categories.
arXiv Detail & Related papers (2021-05-04T09:46:26Z) - SPU-Net: Self-Supervised Point Cloud Upsampling by Coarse-to-Fine
Reconstruction with Self-Projection Optimization [52.20602782690776]
It is expensive and tedious to obtain large scale paired sparse-canned point sets for training from real scanned sparse data.
We propose a self-supervised point cloud upsampling network, named SPU-Net, to capture the inherent upsampling patterns of points lying on the underlying object surface.
We conduct various experiments on both synthetic and real-scanned datasets, and the results demonstrate that we achieve comparable performance to the state-of-the-art supervised methods.
arXiv Detail & Related papers (2020-12-08T14:14:09Z) - Point-Set Anchors for Object Detection, Instance Segmentation and Pose
Estimation [85.96410825961966]
We argue that the image features extracted at a central point contain limited information for predicting distant keypoints or bounding box boundaries.
To facilitate inference, we propose to instead perform regression from a set of points placed at more advantageous positions.
We apply this proposed framework, called Point-Set Anchors, to object detection, instance segmentation, and human pose estimation.
arXiv Detail & Related papers (2020-07-06T15:59:56Z) - Segment as Points for Efficient Online Multi-Object Tracking and
Segmentation [66.03023110058464]
We propose a highly effective method for learning instance embeddings based on segments by converting the compact image representation to un-ordered 2D point cloud representation.
Our method generates a new tracking-by-points paradigm where discriminative instance embeddings are learned from randomly selected points rather than images.
The resulting online MOTS framework, named PointTrack, surpasses all the state-of-the-art methods by large margins.
arXiv Detail & Related papers (2020-07-03T08:29:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.