論文の概要: A Protection Method of Trained CNN Model with Secret Key from
Unauthorized Access
- arxiv url: http://arxiv.org/abs/2105.14756v1
- Date: Mon, 31 May 2021 07:37:33 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-01 16:58:14.511627
- Title: A Protection Method of Trained CNN Model with Secret Key from
Unauthorized Access
- Title(参考訳): 非許可アクセスからの秘密鍵付き訓練CNNモデルの保護方法
- Authors: AprilPyone MaungMaung and Hitoshi Kiya
- Abstract要約: 本稿では,秘密鍵セットを用いて畳み込みニューラルネットワーク(CNN)モデルを保護する新しい手法を提案する。
本手法は,著作権侵害から保護するだけでなく,モデルの機能も不正アクセスから保護することができる。
- 参考スコア(独自算出の注目度): 15.483078145498085
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose a novel method for protecting convolutional neural
network (CNN) models with a secret key set so that unauthorized users without
the correct key set cannot access trained models. The method enables us to
protect not only from copyright infringement but also the functionality of a
model from unauthorized access without any noticeable overhead. We introduce
three block-wise transformations with a secret key set to generate learnable
transformed images: pixel shuffling, negative/positive transformation, and FFX
encryption. Protected models are trained by using transformed images. The
results of experiments with the CIFAR and ImageNet datasets show that the
performance of a protected model was close to that of non-protected models when
the key set was correct, while the accuracy severely dropped when an incorrect
key set was given. The protected model was also demonstrated to be robust
against various attacks. Compared with the state-of-the-art model protection
with passports, the proposed method does not have any additional layers in the
network, and therefore, there is no overhead during training and inference
processes.
- Abstract(参考訳): 本稿では,cnn(convolutional neural network,畳み込みニューラルネットワーク)モデルを秘密鍵セットで保護する手法を提案する。
本手法は,著作権侵害から保護するだけでなく,無許可アクセスからモデルの機能を目立ったオーバーヘッドなく保護することを可能にする。
我々は,ピクセルシャッフル,負正変換,ffx暗号化という,学習可能な変換画像を生成するための秘密鍵セットを備えた3つのブロックワイズ変換を導入する。
保護されたモデルは変換された画像を用いて訓練される。
CIFARおよびImageNetデータセットを用いた実験の結果、キーセットが正しい場合には保護されていないモデルに近い性能を示し、不正なキーセットが与えられた場合には精度が著しく低下した。
保護されたモデルは様々な攻撃に対して堅牢であることも証明された。
パスポートを用いた最新モデル保護と比較して,提案手法はネットワークに付加的なレイヤを持たないため,トレーニングや推論プロセスのオーバーヘッドは発生しない。
関連論文リスト
- EnTruth: Enhancing the Traceability of Unauthorized Dataset Usage in Text-to-image Diffusion Models with Minimal and Robust Alterations [73.94175015918059]
本稿では、未承認のデータセット使用のトレーサビリティを高める新しいアプローチであるEnTruthを紹介する。
テンプレートの暗記を戦略的に取り入れることで、EnTruthは不正なモデルの特定の振る舞いを侵害の証拠として引き起こすことができる。
本手法は, 暗記の正当性を調査し, 著作権保護に利用し, 呪いを祝福する最初の方法である。
論文 参考訳(メタデータ) (2024-06-20T02:02:44Z) - ModelLock: Locking Your Model With a Spell [90.36433941408536]
ModelLockと呼ばれる拡散ベースのフレームワークは、テキストガイドによる画像編集を探求し、トレーニングデータをユニークなスタイルに変換するか、バックグラウンドで新しいオブジェクトを追加する。
このデータセットに微調整されたモデルはロックされ、キープロンプトによってのみアンロックされる。
画像分類とセグメンテーションの両方のタスクについて広範な実験を行い、ModelLockが期待する性能を著しく低下させることなく、効果的に細調整されたモデルをロックできることを示します。
論文 参考訳(メタデータ) (2024-05-25T15:52:34Z) - PRO-Face S: Privacy-preserving Reversible Obfuscation of Face Images via
Secure Flow [69.78820726573935]
保護フローベースモデルを用いて,プライバシ保護による顔画像の可逆難読化(Reversible Obfuscation of Face image)を略してpro-Face Sと命名する。
本フレームワークでは、Invertible Neural Network(INN)を使用して、入力画像と、その事前難読化されたフォームとを処理し、事前難読化された画像と視覚的に近似したプライバシー保護された画像を生成する。
論文 参考訳(メタデータ) (2023-07-18T10:55:54Z) - DIAGNOSIS: Detecting Unauthorized Data Usages in Text-to-image Diffusion Models [79.71665540122498]
保護されたデータセットにインジェクトされたコンテンツを配置することで、不正なデータ利用を検出する手法を提案する。
具体的には、ステルス画像ワープ機能を用いて、これらの画像にユニークな内容を追加することにより、保護された画像を修正する。
このモデルが注入されたコンテンツを記憶したかどうかを解析することにより、不正に不正に使用したモデルを検出することができる。
論文 参考訳(メタデータ) (2023-07-06T16:27:39Z) - Access Control with Encrypted Feature Maps for Object Detection Models [10.925242558525683]
本稿では,オブジェクト検出モデルのための秘密鍵を用いたアクセス制御手法を提案する。
選択された特徴マップは、モデルのトレーニングとテストのための秘密鍵で暗号化される。
実験では、保護されたモデルにより、許可されたユーザーが保護されていないモデルとほぼ同じ性能を得られるようにした。
論文 参考訳(メタデータ) (2022-09-29T14:46:04Z) - MOVE: Effective and Harmless Ownership Verification via Embedded
External Features [109.19238806106426]
本稿では,異なる種類のモデル盗難を同時に防ぐために,効果的かつ無害なモデル所有者認証(MOVE)を提案する。
我々は、疑わしいモデルがディフェンダー特定外部特徴の知識を含むかどうかを検証し、所有権検証を行う。
特に、包括的モデル保護を提供するために、ホワイトボックスとブラックボックスの両方の設定でMOVE法を開発した。
論文 参考訳(メタデータ) (2022-08-04T02:22:29Z) - An Encryption Method of ConvMixer Models without Performance Degradation [14.505867475659276]
本稿では秘密鍵を用いたConvMixerモデルの暗号化手法を提案する。
本手法の有効性を,分類精度とモデル保護の観点から評価した。
論文 参考訳(メタデータ) (2022-07-25T07:09:16Z) - Protecting Semantic Segmentation Models by Using Block-wise Image
Encryption with Secret Key from Unauthorized Access [13.106063755117399]
秘密鍵を用いたブロックワイズ変換を利用して,セマンティックセグメンテーションモデルを不正アクセスから保護することを提案する。
実験の結果,提案手法により,適切なキーを持つ適切なユーザに対して,モデルにフル容量でアクセスし,不正ユーザの性能を低下させることができることがわかった。
論文 参考訳(メタデータ) (2021-07-20T09:31:15Z) - Transfer Learning-Based Model Protection With Secret Key [15.483078145498085]
トレーニングを受けたモデルを秘密鍵で保護する新しい方法を提案する。
ImageNetデータセットを用いた実験では、保護されたモデルのパフォーマンスが、正しいキーが与えられたときに保護されていないモデルに近いことが示された。
論文 参考訳(メタデータ) (2021-03-05T08:12:11Z) - Training DNN Model with Secret Key for Model Protection [17.551718914117917]
本稿では,ブロックワイズ画素シャッフルと秘密鍵を前処理技術として用いた画像入力によるモデル保護手法を提案する。
実験の結果,キーが正しい場合,保護モデルの性能は非保護モデルに近いことがわかった。
論文 参考訳(メタデータ) (2020-08-06T04:25:59Z) - Model Watermarking for Image Processing Networks [120.918532981871]
深層モデルの知的財産権を保護する方法は、非常に重要であるが、真に研究されていない問題である。
画像処理モデルを保護するための最初のモデル透かしフレームワークを提案する。
論文 参考訳(メタデータ) (2020-02-25T18:36:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。