論文の概要: Energy-Efficient and Federated Meta-Learning via Projected Stochastic
Gradient Ascent
- arxiv url: http://arxiv.org/abs/2105.14772v1
- Date: Mon, 31 May 2021 08:15:44 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-02 04:20:59.727241
- Title: Energy-Efficient and Federated Meta-Learning via Projected Stochastic
Gradient Ascent
- Title(参考訳): 確率勾配法によるエネルギー効率・フェデレーションメタラーニング
- Authors: Anis Elgabli, Chaouki Ben Issaid, Amrit S. Bedi, Mehdi Bennis, Vaneet
Aggarwal
- Abstract要約: エネルギー効率のよいメタラーニングフレームワークを提案する。
各タスクは別々のエージェントによって所有されていると仮定するため、メタモデルをトレーニングするために限られたタスクが使用される。
- 参考スコア(独自算出の注目度): 79.58680275615752
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we propose an energy-efficient federated meta-learning
framework. The objective is to enable learning a meta-model that can be
fine-tuned to a new task with a few number of samples in a distributed setting
and at low computation and communication energy consumption. We assume that
each task is owned by a separate agent, so a limited number of tasks is used to
train a meta-model. Assuming each task was trained offline on the agent's local
data, we propose a lightweight algorithm that starts from the local models of
all agents, and in a backward manner using projected stochastic gradient ascent
(P-SGA) finds a meta-model. The proposed method avoids complex computations
such as computing hessian, double looping, and matrix inversion, while
achieving high performance at significantly less energy consumption compared to
the state-of-the-art methods such as MAML and iMAML on conducted experiments
for sinusoid regression and image classification tasks.
- Abstract(参考訳): 本稿では,エネルギー効率のよいメタラーニングフレームワークを提案する。
目的は,分散環境で,低計算量および通信エネルギー消費時に,少数のサンプルを用いて新しいタスクに微調整できるメタモデルを学習できるようにすることである。
各タスクは別々のエージェントによって所有されていると仮定するため、メタモデルをトレーニングするために限られたタスクが使用される。
各タスクがエージェントのローカルデータ上でオフラインでトレーニングされたと仮定すると、すべてのエージェントのローカルモデルから始まり、p-sga (projected stochastic gradient ascent) を用いて後向きにメタモデルを見つける軽量なアルゴリズムを提案する。
提案手法は,正弦波回帰および画像分類タスクの実施実験において,MAMLやiMAMLのような最先端の手法と比較して,計算ヘシアン,二重ループ,行列インバージョンなどの複雑な計算を極めて少ないエネルギー消費で実現する。
関連論文リスト
- Task-Distributionally Robust Data-Free Meta-Learning [99.56612787882334]
Data-Free Meta-Learning (DFML)は、複数の事前学習モデルを活用することで、独自のトレーニングデータを必要とせずに、新しいタスクを効率的に学習することを目的としている。
TDS(Task-Distribution Shift)とTDC(Task-Distribution Corruption)の2つの大きな課題を初めて明らかにした。
論文 参考訳(メタデータ) (2023-11-23T15:46:54Z) - Meta-Learning with Self-Improving Momentum Target [72.98879709228981]
メタラーナーの性能を向上させるために,SiMT(Self-improving Momentum Target)を提案する。
SiMTはメタラーナーの時間アンサンブルから適応してターゲットモデルを生成する。
我々は、SiMTが幅広いメタ学習手法と組み合わせることで、大きなパフォーマンス向上をもたらすことを示す。
論文 参考訳(メタデータ) (2022-10-11T06:45:15Z) - Enhanced Meta Reinforcement Learning using Demonstrations in Sparse
Reward Environments [10.360491332190433]
Demonstrations を用いた Enhanced Meta-RL というアルゴリズムのクラスを開発する。
本稿では、EMRLDがRLと教師付き学習をオフラインデータ上で併用してメタポリティクスを生成する方法を示す。
また,EMRLDアルゴリズムは,様々なスパース報酬環境における既存手法よりも有意に優れていることを示す。
論文 参考訳(メタデータ) (2022-09-26T22:01:12Z) - ST-MAML: A Stochastic-Task based Method for Task-Heterogeneous
Meta-Learning [12.215288736524268]
本稿では,モデルに依存しないメタラーニング(MAML)を複数のタスク分布から学習するための新しい手法ST-MAMLを提案する。
そこで本研究では,ST-MAMLが2つの画像分類タスク,1つの曲線評価ベンチマーク,1つの画像補完問題,および実世界の温度予測アプリケーションにおいて,最先端の映像分類タスクに適合または優れることを示す。
論文 参考訳(メタデータ) (2021-09-27T18:54:50Z) - Memory-Based Optimization Methods for Model-Agnostic Meta-Learning and
Personalized Federated Learning [56.17603785248675]
モデルに依存しないメタラーニング (MAML) が人気のある研究分野となっている。
既存のMAMLアルゴリズムは、イテレーション毎にメタモデルを更新するためにいくつかのタスクとデータポイントをサンプリングすることで、エピソードのアイデアに依存している。
本稿では,MAMLのメモリベースアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-06-09T08:47:58Z) - Meta-Learning with Fewer Tasks through Task Interpolation [67.03769747726666]
現在のメタ学習アルゴリズムは多数のメタトレーニングタスクを必要としており、実際のシナリオではアクセスできない可能性がある。
タスクグラデーションを用いたメタラーニング(MLTI)により,タスクのペアをランダムにサンプリングし,対応する特徴やラベルを補間することにより,タスクを効果的に生成する。
実証的な実験では,提案する汎用MLTIフレームワークが代表的なメタ学習アルゴリズムと互換性があり,他の最先端戦略を一貫して上回っていることがわかった。
論文 参考訳(メタデータ) (2021-06-04T20:15:34Z) - B-SMALL: A Bayesian Neural Network approach to Sparse Model-Agnostic
Meta-Learning [2.9189409618561966]
本稿では,b-smallアルゴリズムと呼ぶベイズ型ニューラルネットワークに基づくmamlアルゴリズムを提案する。
分類タスクと回帰タスクを用いたB-MAMLのパフォーマンスを実証し、MDLを用いたスパーシファイングBNNのトレーニングがモデルのパラメータフットプリントを実際に改善することを強調した。
論文 参考訳(メタデータ) (2021-01-01T09:19:48Z) - A Nested Bi-level Optimization Framework for Robust Few Shot Learning [10.147225934340877]
NestedMAMLはトレーニングタスクやインスタンスに重みを割り当てることを学ぶ。
合成および実世界のデータセットの実験では、NestedMAMLは「不要な」タスクやインスタンスの効果を効率的に緩和している。
論文 参考訳(メタデータ) (2020-11-13T06:41:22Z) - Dif-MAML: Decentralized Multi-Agent Meta-Learning [54.39661018886268]
我々は,MAML や Dif-MAML と呼ばれる協調型マルチエージェントメタ学習アルゴリズムを提案する。
提案手法により, エージェントの集合が線形速度で合意に達し, 集約MAMLの定常点に収束できることを示す。
シミュレーションの結果は従来の非協調的な環境と比較して理論的な結果と優れた性能を示している。
論文 参考訳(メタデータ) (2020-10-06T16:51:09Z) - Model-based Adversarial Meta-Reinforcement Learning [38.28304764312512]
モデルに基づく対向メタ強化学習(AdMRL)を提案する。
AdMRLは、タスクファミリ内のすべてのタスク間の最悪の部分最適化ギャップを最小限にすることを目的としている。
本手法をいくつかの連続制御ベンチマークで評価し,全てのタスクに対して最悪の性能を示す。
論文 参考訳(メタデータ) (2020-06-16T02:21:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。