論文の概要: Refined Deep Neural Network and U-Net for Polyps Segmentation
- arxiv url: http://arxiv.org/abs/2105.14848v1
- Date: Mon, 31 May 2021 10:02:52 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-02 02:36:46.705695
- Title: Refined Deep Neural Network and U-Net for Polyps Segmentation
- Title(参考訳): ポリプセグメンテーションのための精製ディープニューラルネットワークとU-Net
- Authors: Quoc-Huy Trinh, Minh-Van Nguyen, Thiet-Gia Huynh, Minh-Triet Tran
- Abstract要約: Inception module, Adaptive Convolutional Neural Network with U-Net model, and PraNet for semantic segmentation of various types of polyps in endoscopic image。
提案手法は,複数実験による精度と効率性を示すとともに,Jaccardインデックス0.765で上位3位にランクインした。
- 参考スコア(独自算出の注目度): 2.2997477356053255
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Medico: Multimedia Task 2020 focuses on developing an efficient and
accurate computer-aided diagnosis system for automatic segmentation [3]. We
participate in task 1, Polyps segmentation task, which is to develop algorithms
for segmenting polyps on a comprehensive dataset. In this task, we propose
methods combining Residual module, Inception module, Adaptive Convolutional
neural network with U-Net model, and PraNet for semantic segmentation of
various types of polyps in endoscopic images. We select 5 runs with different
architecture and parameters in our methods. Our methods show potential results
in accuracy and efficiency through multiple experiments, and our team is in the
Top 3 best results with a Jaccard index of 0.765.
- Abstract(参考訳): medico: multimedia task 2020は、自動セグメンテーションのための効率的かつ正確なコンピュータ支援診断システムの開発に焦点を当てている。
我々は,包括的データセット上のポリープのセグメンテーションアルゴリズムを開発するために,タスク1のPolypsセグメンテーションタスクに参加する。
本研究では,u-netモデルを用いた適応畳み込みニューラルネットワークと,内視鏡画像における各種ポリプのセマンティクスセグメンテーションのためのpranetを組み合わせた残余モジュールとインセプションモジュールを提案する。
メソッドで異なるアーキテクチャとパラメータで5つの実行を選択します。
提案手法は,複数の実験で精度と効率が向上する可能性を示し,jaccard index 0.765で上位3位にランクインした。
関連論文リスト
- Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
本稿では,2ストリームグラフ畳み込みネットワーク(TSGCN)を提案する。
TSGCNは3次元歯(表面)セグメンテーションにおいて最先端の方法よりも優れています。
論文 参考訳(メタデータ) (2022-04-19T10:41:09Z) - CFPNet-M: A Light-Weight Encoder-Decoder Based Network for Multimodal
Biomedical Image Real-Time Segmentation [0.0]
我々は,新しい軽量アーキテクチャ -- 医療用チャネルワイズ機能ピラミッドネットワークを開発した。
u-netの約2%のパラメータと8mbのメモリを持つ5つの医療データセットで同等のセグメンテーション結果を達成している。
論文 参考訳(メタデータ) (2021-05-10T02:29:11Z) - Two layer Ensemble of Deep Learning Models for Medical Image
Segmentation [0.2699900017799093]
医用画像のセグメンテーションのための深層学習モデルの2層アンサンブルを提案する。
トレーニング画像の付加データとして、第1層の各モデルによって作成された各トレーニング画像画素の予測を用いる。
次に、各モデルが結合結果に異なる貢献をする重みに基づくスキームを用いて、第2層の予測を組み合わせる。
論文 参考訳(メタデータ) (2021-04-10T16:52:34Z) - Deep ensembles based on Stochastic Activation Selection for Polyp
Segmentation [82.61182037130406]
本研究は,大腸内視鏡検査における画像分割,特に正確なポリープ検出とセグメンテーションを扱う。
イメージセグメンテーションの基本アーキテクチャはエンコーダとデコーダで構成されている。
我々はデコーダのバックボーンを変更することで得られるDeepLabアーキテクチャのバリエーションを比較した。
論文 参考訳(メタデータ) (2021-04-02T02:07:37Z) - TSGCNet: Discriminative Geometric Feature Learning with Two-Stream
GraphConvolutional Network for 3D Dental Model Segmentation [141.2690520327948]
2流グラフ畳み込みネットワーク(TSGCNet)を提案し、異なる幾何学的特性から多視点情報を学ぶ。
3次元口腔内スキャナーで得られた歯科モデルのリアルタイムデータセットを用いてTSGCNetの評価を行った。
論文 参考訳(メタデータ) (2020-12-26T08:02:56Z) - Solving Mixed Integer Programs Using Neural Networks [57.683491412480635]
本稿では,mipソルバの2つのキーサブタスクに学習を適用し,高品質なジョイント変数割当を生成し,その割当と最適課題との客観的値の差を限定する。
提案手法は,ニューラルネットワークに基づく2つのコンポーネントであるニューラルダイバーディングとニューラルブランチを構築し,SCIPなどのベースMIPソルバで使用する。
2つのGoogle生産データセットとMIPLIBを含む6つの現実世界データセットに対するアプローチを評価し、それぞれに別々のニューラルネットワークをトレーニングする。
論文 参考訳(メタデータ) (2020-12-23T09:33:11Z) - DoDNet: Learning to segment multi-organ and tumors from multiple
partially labeled datasets [102.55303521877933]
本稿では,複数の臓器と腫瘍を部分的にラベル付けしたデータセット上に分割する動的オンデマンドネットワーク(DoDNet)を提案する。
DoDNetは共有エンコーダデコーダアーキテクチャ、タスク符号化モジュール、動的畳み込みフィルタを生成するコントローラ、そして単一だが動的セグメンテーションヘッドで構成されている。
論文 参考訳(メタデータ) (2020-11-20T04:56:39Z) - Searching Learning Strategy with Reinforcement Learning for 3D Medical
Image Segmentation [15.059891142682117]
本稿では,強化学習を用いた最適学習戦略のための自動探索手法を提案する。
提案手法は,3次元医用画像分割の課題に対して有効である。
論文 参考訳(メタデータ) (2020-06-10T14:24:06Z) - Predicting Scores of Medical Imaging Segmentation Methods with
Meta-Learning [0.30458514384586394]
異なる臓器とモダリティの10つのデータセットにまたがるセグメンテーションのメタラーニングについて検討した。
我々は,メタ機能と先行モデルの性能の関係を学習するために,ベクトル回帰とディープニューラルネットワークをサポートする。
これらの結果は,医療画像におけるメタラーニングの可能性を示している。
論文 参考訳(メタデータ) (2020-05-08T07:47:52Z) - Unpaired Multi-modal Segmentation via Knowledge Distillation [77.39798870702174]
本稿では,不対向画像分割のための新しい学習手法を提案する。
提案手法では,CTおよびMRI間での畳み込みカーネルの共有により,ネットワークパラメータを多用する。
我々は2つの多クラスセグメンテーション問題に対するアプローチを広範囲に検証した。
論文 参考訳(メタデータ) (2020-01-06T20:03:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。