論文の概要: Urban Traffic Surveillance (UTS): A fully probabilistic 3D tracking
approach based on 2D detections
- arxiv url: http://arxiv.org/abs/2105.14993v2
- Date: Tue, 1 Jun 2021 12:59:51 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-02 14:46:03.824198
- Title: Urban Traffic Surveillance (UTS): A fully probabilistic 3D tracking
approach based on 2D detections
- Title(参考訳): 都市交通監視(UTS:Urban Traffic Surveillance) : 2次元検出に基づく完全確率的3D追跡手法
- Authors: Henry Bradler, Adrian Kretz and Rudolf Mester
- Abstract要約: 都市交通監視(Urban Traffic Surveillance、UTS)は、モノクロカメラとキャリブレーションカメラをベースとした監視システムである。
UTSは3Dバウンディングボックス表現と物理的に合理的な3Dモーションモデルを用いて車両を追跡している。
- 参考スコア(独自算出の注目度): 11.34426502082293
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Urban Traffic Surveillance (UTS) is a surveillance system based on a
monocular and calibrated video camera that detects vehicles in an urban traffic
scenario with dense traffic on multiple lanes and vehicles performing sharp
turning maneuvers. UTS then tracks the vehicles using a 3D bounding box
representation and a physically reasonable 3D motion model relying on an
unscented Kalman filter based approach. Since UTS recovers positions, shape and
motion information in a three-dimensional world coordinate system, it can be
employed to recognize diverse traffic violations or to supply intelligent
vehicles with valuable traffic information. We build on YOLOv3 as a detector
yielding 2D bounding boxes and class labels for each vehicle. A 2D detector
renders our system much more independent to different camera perspectives as a
variety of labeled training data is available. This allows for a good
generalization while also being more hardware efficient. The task of 3D
tracking based on 2D detections is supported by integrating class specific
prior knowledge about the vehicle shape. We quantitatively evaluate UTS using
self generated synthetic data and ground truth from the CARLA simulator, due to
the non-existence of datasets with an urban vehicle surveillance setting and
labeled 3D bounding boxes. Additionally, we give a qualitative impression of
how UTS performs on real-world data. Our implementation is capable of operating
in real time on a reasonably modern workstation. To the best of our knowledge,
UTS is to date the only 3D vehicle tracking system in a surveillance scenario
(static camera observing moving targets).
- Abstract(参考訳): 都市交通監視(英語: urban traffic surveillance、略称:uts)は、複数の車線や車両が集中する都市交通シナリオにおける車両を検知し、鋭い旋回操作を行う単眼およびキャリブレーションビデオカメラに基づく監視システムである。
UTSは3Dバウンディングボックス表現と、無意味なカルマンフィルタに基づく物理的に合理的な3Dモーションモデルを用いて車両を追跡する。
UTSは3次元世界座標系における位置、形状、運動情報を復元するため、多様な交通違反を認識したり、貴重な交通情報を提供するために使用できる。
YOLOv3は、各車両の2Dバウンディングボックスとクラスラベルを生成する検出器として構築されている。
2D検出器は、さまざまなラベル付きトレーニングデータが利用できるため、我々のシステムを異なるカメラ視点にはるかに独立させる。
これにより、よりハードウェア効率が良く、優れた一般化が可能になる。
2次元検出に基づく3Dトラッキングのタスクは、車両形状に関するクラス固有の事前知識を統合することで支援される。
都市部における車両監視設定とラベル付き3Dバウンディングボックスによるデータセットの非存在により,CARLAシミュレータからの自己生成合成データと地上真実を用いてUTSを定量的に評価した。
さらに,実世界のデータに対するUTSの動作の質的な印象を与える。
私たちの実装は、かなりモダンなワークステーション上でリアルタイムに動作できます。
われわれの知る限り、UTSは監視シナリオ(静止カメラによる移動目標の観測)の中で唯一の3D車両追跡システムとなる。
関連論文リスト
- HeightFormer: A Semantic Alignment Monocular 3D Object Detection Method from Roadside Perspective [11.841338298700421]
本研究では,空間的前駆体とVoxel Pooling formerを統合した3次元物体検出フレームワークを提案する。
Rope3DとDAIR-V2X-Iデータセットを用いて実験を行い、提案アルゴリズムが車とサイクリストの両方を検知する際の性能を実証した。
論文 参考訳(メタデータ) (2024-10-10T09:37:33Z) - 3D Data Augmentation for Driving Scenes on Camera [50.41413053812315]
本稿では,Drive-3DAugと呼ばれる3次元データ拡張手法を提案する。
まずNeural Radiance Field(NeRF)を用いて,背景および前景の3次元モデルの再構成を行う。
そして、予め定義された背景の有効領域に適応した位置と向きの3Dオブジェクトを配置することにより、拡張駆動シーンを得ることができる。
論文 参考訳(メタデータ) (2023-03-18T05:51:05Z) - HUM3DIL: Semi-supervised Multi-modal 3D Human Pose Estimation for
Autonomous Driving [95.42203932627102]
3Dの人間のポーズ推定は、自動運転車が歩行者の微妙で複雑な振る舞いを知覚し理解できるようにする新しい技術である。
提案手法は,これらの補完信号を半教師付き方式で効率的に利用し,既存の手法よりも大きなマージンで性能を向上する。
具体的には、LiDAR点を画素整列マルチモーダル特徴に埋め込み、トランスフォーマーの精細化段階を経る。
論文 参考訳(メタデータ) (2022-12-15T11:15:14Z) - Real-Time And Robust 3D Object Detection with Roadside LiDARs [20.10416681832639]
道路沿いのLiDARにおける交通参加者をリアルタイムに検出できる3次元物体検出モデルを設計する。
我々のモデルは既存の3D検出器をベースラインとして使用し、精度を向上させる。
スマートシティのアプリケーションに使用できるLiDARベースの3D検出器に多大な貢献をしています。
論文 参考訳(メタデータ) (2022-07-11T21:33:42Z) - Weakly Supervised Training of Monocular 3D Object Detectors Using Wide
Baseline Multi-view Traffic Camera Data [19.63193201107591]
交差点における車両の7DoF予測は,道路利用者間の潜在的な衝突を評価する上で重要な課題である。
交通監視カメラ用3次元物体検出装置の微調整を弱教師付きで行う手法を開発した。
提案手法は,自動運転車のデータセット上で最上位のモノクル3Dオブジェクト検出器と同等の精度で車両の7DoFの予測精度を推定する。
論文 参考訳(メタデータ) (2021-10-21T08:26:48Z) - Learnable Online Graph Representations for 3D Multi-Object Tracking [156.58876381318402]
3D MOT問題に対する統一型学習型アプローチを提案します。
我々は、完全にトレーニング可能なデータアソシエーションにNeural Message Passing Networkを使用します。
AMOTAの65.6%の最先端性能と58%のIDスウィッチを達成して、公開可能なnuScenesデータセットに対する提案手法のメリットを示す。
論文 参考訳(メタデータ) (2021-04-23T17:59:28Z) - Monocular Quasi-Dense 3D Object Tracking [99.51683944057191]
周囲の物体の将来の位置を予測し、自律運転などの多くのアプリケーションで観測者の行動を計画するためには、信頼性と正確な3D追跡フレームワークが不可欠である。
移動プラットフォーム上で撮影された2次元画像のシーケンスから,移動物体を時間とともに効果的に関連付け,その全3次元バウンディングボックス情報を推定するフレームワークを提案する。
論文 参考訳(メタデータ) (2021-03-12T15:30:02Z) - Probabilistic 3D Multi-Modal, Multi-Object Tracking for Autonomous
Driving [22.693895321632507]
異なる訓練可能なモジュールからなる確率的、マルチモーダル、マルチオブジェクトトラッキングシステムを提案する。
本手法はNuScenes Trackingデータセットの現在の状態を上回っていることを示した。
論文 参考訳(メタデータ) (2020-12-26T15:00:54Z) - Fine-Grained Vehicle Perception via 3D Part-Guided Visual Data
Augmentation [77.60050239225086]
実画像中の車両に動的部品を付加した3次元自動車モデルによる効果的なトレーニングデータ生成プロセスを提案する。
私達のアプローチは人間の相互作用なしで完全に自動です。
VUS解析用マルチタスクネットワークとVHI解析用マルチストリームネットワークを提案する。
論文 参考訳(メタデータ) (2020-12-15T03:03:38Z) - Training-free Monocular 3D Event Detection System for Traffic
Surveillance [93.65240041833319]
既存のイベント検出システムは、主に学習ベースであり、大量のトレーニングデータが利用可能な場合、十分なパフォーマンスを実現している。
現実のシナリオでは、十分なラベル付きトレーニングデータの収集は高価であり、時には不可能である。
本稿では,交通監視のためのトレーニング不要な単眼3Dイベント検出システムを提案する。
論文 参考訳(メタデータ) (2020-02-01T04:42:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。