Telling Stories through Multi-User Dialogue by Modeling Character
Relations
- URL: http://arxiv.org/abs/2105.15054v1
- Date: Mon, 31 May 2021 15:39:41 GMT
- Title: Telling Stories through Multi-User Dialogue by Modeling Character
Relations
- Authors: Wai Man Si, Prithviraj Ammanabrolu, Mark O. Riedl
- Abstract summary: This paper explores character-driven story continuation, in which the story emerges through characters' first- and second-person narration as well as dialogue.
We hypothesize that a multi-task model that trains on character dialogue plus character relationship information improves transformer-based story continuation.
A series of ablations lend evidence to our hypothesis, showing that our multi-task model using character relationships improves story continuation accuracy over strong baselines.
- Score: 14.117921448623342
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper explores character-driven story continuation, in which the story
emerges through characters' first- and second-person narration as well as
dialogue -- requiring models to select language that is consistent with a
character's persona and their relationships with other characters while
following and advancing the story. We hypothesize that a multi-task model that
trains on character dialogue plus character relationship information improves
transformer-based story continuation. To this end, we extend the Critical Role
Dungeons and Dragons Dataset (Rameshkumar and Bailey, 2020) -- consisting of
dialogue transcripts of people collaboratively telling a story while playing
the role-playing game Dungeons and Dragons -- with automatically extracted
relationships between each pair of interacting characters as well as their
personas. A series of ablations lend evidence to our hypothesis, showing that
our multi-task model using character relationships improves story continuation
accuracy over strong baselines.
Related papers
- Agents' Room: Narrative Generation through Multi-step Collaboration [54.98886593802834]
We propose a generation framework inspired by narrative theory that decomposes narrative writing into subtasks tackled by specialized agents.
We show that Agents' Room generates stories preferred by expert evaluators over those produced by baseline systems.
arXiv Detail & Related papers (2024-10-03T15:44:42Z) - Generating Visual Stories with Grounded and Coreferent Characters [63.07511918366848]
We present the first model capable of predicting visual stories with consistently grounded and coreferent character mentions.
Our model is finetuned on a new dataset which we build on top of the widely used VIST benchmark.
We also propose new evaluation metrics to measure the richness of characters and coreference in stories.
arXiv Detail & Related papers (2024-09-20T14:56:33Z) - What if Red Can Talk? Dynamic Dialogue Generation Using Large Language Models [0.0]
We introduce a dialogue filler framework that utilizes large language models (LLMs) to generate dynamic and contextually appropriate character interactions.
We test this framework within the environments of Final Fantasy VII Remake and Pokemon.
This study aims to assist developers in crafting more nuanced filler dialogues, thereby enriching player immersion and enhancing the overall RPG experience.
arXiv Detail & Related papers (2024-07-29T19:12:18Z) - CharacterGLM: Customizing Chinese Conversational AI Characters with
Large Language Models [66.4382820107453]
We present CharacterGLM, a series of models built upon ChatGLM, with model sizes ranging from 6B to 66B parameters.
Our CharacterGLM is designed for generating Character-based Dialogues (CharacterDial), which aims to equip a conversational AI system with character customization for satisfying people's inherent social desires and emotional needs.
arXiv Detail & Related papers (2023-11-28T14:49:23Z) - NarrativePlay: Interactive Narrative Understanding [27.440721435864194]
We introduce NarrativePlay, a novel system that allows users to role-play a fictional character and interact with other characters in narratives in an immersive environment.
We leverage Large Language Models (LLMs) to generate human-like responses, guided by personality traits extracted from narratives.
NarrativePlay has been evaluated on two types of narratives, detective and adventure stories, where users can either explore the world or improve their favorability with the narrative characters through conversations.
arXiv Detail & Related papers (2023-10-02T13:24:00Z) - A Benchmark for Understanding and Generating Dialogue between Characters
in Stories [75.29466820496913]
We present the first study to explore whether machines can understand and generate dialogue in stories.
We propose two new tasks including Masked Dialogue Generation and Dialogue Speaker Recognition.
We show the difficulty of the proposed tasks by testing existing models with automatic and manual evaluation on DialStory.
arXiv Detail & Related papers (2022-09-18T10:19:04Z) - Persona-Guided Planning for Controlling the Protagonist's Persona in
Story Generation [71.24817035071176]
We propose a planning-based generation model named CONPER to explicitly model the relationship between personas and events.
Both automatic and manual evaluation results demonstrate that CONPER outperforms state-of-the-art baselines for generating more coherent and persona-controllable stories.
arXiv Detail & Related papers (2022-04-22T13:45:02Z) - Unsupervised Enrichment of Persona-grounded Dialog with Background
Stories [27.52543925693796]
We equip dialog models with 'background stories' related to a persona by leveraging fictional narratives from existing story datasets.
We perform an unsupervised adaptation of a retrieved story for generating a dialog response using a gradient-based rewriting technique.
Our method can generate responses that are more diverse, and are rated more engaging and human-like by human evaluators.
arXiv Detail & Related papers (2021-06-15T18:20:27Z) - Inferring the Reader: Guiding Automated Story Generation with
Commonsense Reasoning [12.264880519328353]
We introduce Commonsense-inference Augmented neural StoryTelling (CAST), a framework for introducing commonsense reasoning into the generation process.
We find that our CAST method produces significantly more coherent, on-topic, enjoyable and fluent stories than existing models in both the single-character and two-character settings.
arXiv Detail & Related papers (2021-05-04T06:40:33Z) - PlotMachines: Outline-Conditioned Generation with Dynamic Plot State
Tracking [128.76063992147016]
We present PlotMachines, a neural narrative model that learns to transform an outline into a coherent story by tracking the dynamic plot states.
In addition, we enrich PlotMachines with high-level discourse structure so that the model can learn different writing styles corresponding to different parts of the narrative.
arXiv Detail & Related papers (2020-04-30T17:16:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.