論文の概要: Using Pareto Simulated Annealing to Address Algorithmic Bias in Machine
Learning
- arxiv url: http://arxiv.org/abs/2105.15064v1
- Date: Mon, 31 May 2021 15:51:43 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-01 21:01:33.361201
- Title: Using Pareto Simulated Annealing to Address Algorithmic Bias in Machine
Learning
- Title(参考訳): Pareto Simulated Annealing を用いた機械学習におけるアルゴリズムバイアスの対応
- Authors: William Blanzeisky, P\'adraig Cunningham
- Abstract要約: バランスの取れた精度と過小評価の両方を最適化する多目的最適化戦略を提案する。
我々は,この戦略の有効性を,1つの実世界のデータセットと2つの実世界のデータセットに示す。
- 参考スコア(独自算出の注目度): 2.055949720959582
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Algorithmic Bias can be due to bias in the training data or issues with the
algorithm itself. These algorithmic issues typically relate to problems with
model capacity and regularisation. This underestimation bias may arise because
the model has been optimised for good generalisation accuracy without any
explicit consideration of bias or fairness. In a sense, we should not be
surprised that a model might be biased when it hasn't been "asked" not to be.
In this paper, we consider including bias (underestimation) as an additional
criterion in model training. We present a multi-objective optimisation strategy
using Pareto Simulated Annealing that optimise for both balanced accuracy and
underestimation. We demonstrate the effectiveness of this strategy on one
synthetic and two real-world datasets.
- Abstract(参考訳): アルゴリズムバイアスは、トレーニングデータのバイアスや、アルゴリズム自体の問題に起因する可能性がある。
これらのアルゴリズム上の問題は通常、モデルのキャパシティと正規化に関する問題に関係している。
この過小評価バイアスは、偏りや公平性を明確に考慮せずに、モデルが適切な一般化精度のために最適化されたために生じるかもしれない。
ある意味では、モデルが"アシュック"されていなければ、バイアスがかかっていることに驚くべきではない。
本稿では,モデル学習における新たな基準としてバイアス(評価)を含める。
本稿では,Pareto Simulated Annealing を用いた多目的最適化手法を提案する。
1つの合成データと2つの実世界のデータセットで、この戦略の有効性を実証する。
関連論文リスト
- Model Debiasing by Learnable Data Augmentation [19.625915578646758]
本稿では,トレーニングを正規化可能なデータ拡張戦略を備えた,新しい2段階学習パイプラインを提案する。
合成および現実的なバイアス付きデータセットの実験は、最先端の分類精度を示し、競合する手法より優れている。
論文 参考訳(メタデータ) (2024-08-09T09:19:59Z) - Improving Bias Mitigation through Bias Experts in Natural Language
Understanding [10.363406065066538]
補助モデルと主モデルの間に二項分類器を導入するデバイアス化フレームワークを提案する。
提案手法は補助モデルのバイアス識別能力を向上させる。
論文 参考訳(メタデータ) (2023-12-06T16:15:00Z) - Self-supervised debiasing using low rank regularization [59.84695042540525]
純粋な相関は、ディープニューラルネットワークの強いバイアスを引き起こし、一般化能力を損なう可能性がある。
ラベルのないサンプルと互換性のある自己監督型脱バイアスフレームワークを提案する。
注目すべきは,提案フレームワークが自己教師付き学習ベースラインの一般化性能を著しく向上させることである。
論文 参考訳(メタデータ) (2022-10-11T08:26:19Z) - Unsupervised Learning of Unbiased Visual Representations [10.871587311621974]
ディープニューラルネットワークは、データセットにバイアスが存在するときに堅牢な表現を学習できないことで知られている。
我々は3つのステップからなる完全に教師なしの脱バイアスフレームワークを提案する。
我々は、非バイアスモデルを得るために最先端の教師付き脱バイアス技術を採用している。
論文 参考訳(メタデータ) (2022-04-26T10:51:50Z) - General Greedy De-bias Learning [163.65789778416172]
本稿では,関数空間における勾配降下のような偏りのあるモデルとベースモデルを優雅に訓練する一般グリーディ・デバイアス学習フレームワーク(GGD)を提案する。
GGDは、事前知識を持つタスク固有バイアスモデルと、事前知識を持たない自己アンサンブルバイアスモデルの両方の設定の下で、より堅牢なベースモデルを学ぶことができる。
論文 参考訳(メタデータ) (2021-12-20T14:47:32Z) - Balanced Q-learning: Combining the Influence of Optimistic and
Pessimistic Targets [74.04426767769785]
シナリオによっては、特定の種類の偏見が好ましいかもしれないことを示す。
そこで我々は,目標を悲観的かつ楽観的な用語の凸組合せに修正した新しい強化学習アルゴリズムであるBa balanced Q-learningを設計する。
論文 参考訳(メタデータ) (2021-11-03T07:30:19Z) - Learning to Estimate Without Bias [57.82628598276623]
ガウスの定理は、重み付き最小二乗推定器は線形モデルにおける線形最小分散アンバイアスド推定(MVUE)であると述べている。
本稿では、バイアス制約のあるディープラーニングを用いて、この結果を非線形設定に拡張する第一歩を踏み出す。
BCEの第二の動機は、同じ未知の複数の推定値が平均化されてパフォーマンスが向上するアプリケーションにおいてである。
論文 参考訳(メタデータ) (2021-10-24T10:23:51Z) - AutoDebias: Learning to Debias for Recommendation [43.84313723394282]
今回提案するtextitAotoDebiasは、他の(小さな)均一なデータセットを利用してデバイアスパラメータを最適化する。
我々は、AutoDebiasの一般化を導き、適切なデバイアス戦略を得る能力を証明する。
論文 参考訳(メタデータ) (2021-05-10T08:03:48Z) - Learning from others' mistakes: Avoiding dataset biases without modeling
them [111.17078939377313]
最先端自然言語処理(NLP)モデルは、意図したタスクをターゲットとする機能ではなく、データセットのバイアスや表面形状の相関をモデル化することを学ぶことが多い。
これまでの研究は、バイアスに関する知識が利用できる場合に、これらの問題を回避するための効果的な方法を示してきた。
本稿では,これらの問題点を無視する学習モデルについて述べる。
論文 参考訳(メタデータ) (2020-12-02T16:10:54Z) - Towards Robustifying NLI Models Against Lexical Dataset Biases [94.79704960296108]
本稿では、語彙的データセットバイアスに対するモデル強化のための、データレベルとモデルレベルのデバイアス法の両方について検討する。
まず、データ拡張と拡張によってデータセットをデバイアスするが、この方法でモデルバイアスを完全に除去することはできないことを示す。
第2のアプローチでは、バーオブワードのサブモデルを使用して、バイアスを悪用する可能性のある機能をキャプチャし、元のモデルがこれらのバイアス付き機能を学ぶのを防ぐ。
論文 参考訳(メタデータ) (2020-05-10T17:56:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。