Reinforced Generative Adversarial Network for Abstractive Text
Summarization
- URL: http://arxiv.org/abs/2105.15176v1
- Date: Mon, 31 May 2021 17:34:47 GMT
- Title: Reinforced Generative Adversarial Network for Abstractive Text
Summarization
- Authors: Tianyang Xu, Chunyun Zhang
- Abstract summary: Sequence-to-sequence models provide a viable new approach to generative summarization.
These models have three drawbacks: their grasp of the details of the original text is often inaccurate, and the text generated by such models often has repetitions.
We propose a new architecture that combines reinforcement learning and adversarial generative networks to enhance the sequence-to-sequence attention model.
- Score: 7.507096634112164
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sequence-to-sequence models provide a viable new approach to generative
summarization, allowing models that are no longer limited to simply selecting
and recombining sentences from the original text. However, these models have
three drawbacks: their grasp of the details of the original text is often
inaccurate, and the text generated by such models often has repetitions, while
it is difficult to handle words that are beyond the word list. In this paper,
we propose a new architecture that combines reinforcement learning and
adversarial generative networks to enhance the sequence-to-sequence attention
model. First, we use a hybrid pointer-generator network that copies words
directly from the source text, contributing to accurate reproduction of
information without sacrificing the ability of generators to generate new
words. Second, we use both intra-temporal and intra-decoder attention to
penalize summarized content and thus discourage repetition. We apply our model
to our own proposed COVID-19 paper title summarization task and achieve close
approximations to the current model on ROUEG, while bringing better
readability.
Related papers
- Improving Sequence-to-Sequence Models for Abstractive Text Summarization Using Meta Heuristic Approaches [0.0]
Humans have a unique ability to create abstractions.
The use of sequence-to-sequence (seq2seq) models for neural abstractive text summarization has been ascending as far as prevalence.
In this article, we aim toward enhancing the present architectures and models for abstractive text summarization.
arXiv Detail & Related papers (2024-03-24T17:39:36Z) - DiffusER: Discrete Diffusion via Edit-based Reconstruction [88.62707047517914]
DiffusER is an edit-based generative model for text based on denoising diffusion models.
It can rival autoregressive models on several tasks spanning machine translation, summarization, and style transfer.
It can also perform other varieties of generation that standard autoregressive models are not well-suited for.
arXiv Detail & Related papers (2022-10-30T16:55:23Z) - Text Generation with Text-Editing Models [78.03750739936956]
This tutorial provides a comprehensive overview of text-editing models and current state-of-the-art approaches.
We discuss challenges related to productionization and how these models can be used to mitigate hallucination and bias.
arXiv Detail & Related papers (2022-06-14T17:58:17Z) - Twist Decoding: Diverse Generators Guide Each Other [116.20780037268801]
We introduce Twist decoding, a simple and general inference algorithm that generates text while benefiting from diverse models.
Our method does not assume the vocabulary, tokenization or even generation order is shared.
arXiv Detail & Related papers (2022-05-19T01:27:53Z) - May the Force Be with Your Copy Mechanism: Enhanced Supervised-Copy
Method for Natural Language Generation [1.2453219864236247]
We propose a novel supervised approach of a copy network that helps the model decide which words need to be copied and which need to be generated.
Specifically, we re-define the objective function, which leverages source sequences and target vocabularies as guidance for copying.
The experimental results on data-to-text generation and abstractive summarization tasks verify that our approach enhances the copying quality and improves the degree of abstractness.
arXiv Detail & Related papers (2021-12-20T06:54:28Z) - Controllable Text Simplification with Explicit Paraphrasing [88.02804405275785]
Text Simplification improves the readability of sentences through several rewriting transformations, such as lexical paraphrasing, deletion, and splitting.
Current simplification systems are predominantly sequence-to-sequence models that are trained end-to-end to perform all these operations simultaneously.
We propose a novel hybrid approach that leverages linguistically-motivated rules for splitting and deletion, and couples them with a neural paraphrasing model to produce varied rewriting styles.
arXiv Detail & Related papers (2020-10-21T13:44:40Z) - Multi-Fact Correction in Abstractive Text Summarization [98.27031108197944]
Span-Fact is a suite of two factual correction models that leverages knowledge learned from question answering models to make corrections in system-generated summaries via span selection.
Our models employ single or multi-masking strategies to either iteratively or auto-regressively replace entities in order to ensure semantic consistency w.r.t. the source text.
Experiments show that our models significantly boost the factual consistency of system-generated summaries without sacrificing summary quality in terms of both automatic metrics and human evaluation.
arXiv Detail & Related papers (2020-10-06T02:51:02Z) - Improving Adversarial Text Generation by Modeling the Distant Future [155.83051741029732]
We consider a text planning scheme and present a model-based imitation-learning approach to alleviate the aforementioned issues.
We propose a novel guider network to focus on the generative process over a longer horizon, which can assist next-word prediction and provide intermediate rewards for generator optimization.
arXiv Detail & Related papers (2020-05-04T05:45:13Z) - Knowledge Graph-Augmented Abstractive Summarization with Semantic-Driven
Cloze Reward [42.925345819778656]
We present ASGARD, a novel framework for Abstractive Summarization with Graph-Augmentation and semantic-driven RewarD.
We propose the use of dual encoders---a sequential document encoder and a graph-structured encoder---to maintain the global context and local characteristics of entities.
Results show that our models produce significantly higher ROUGE scores than a variant without knowledge graph as input on both New York Times and CNN/Daily Mail datasets.
arXiv Detail & Related papers (2020-05-03T18:23:06Z) - A more abstractive summarization model [0.0]
We investigate why pointer-generator network is unable to generate novel words.
We then address that by adding an Out-of-vocabulary penalty.
We also report rouge scores of our model since most summarization models are evaluated with R-1, R-2, R-L scores.
arXiv Detail & Related papers (2020-02-25T15:22:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.