論文の概要: Bringing Structure into Summaries: a Faceted Summarization Dataset for
Long Scientific Documents
- arxiv url: http://arxiv.org/abs/2106.00130v1
- Date: Mon, 31 May 2021 22:58:38 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-03 04:25:41.669247
- Title: Bringing Structure into Summaries: a Faceted Summarization Dataset for
Long Scientific Documents
- Title(参考訳): 要約に構造をもたらす:長い科学文献の要約データセット
- Authors: Rui Meng, Khushboo Thaker, Lei Zhang, Yue Dong, Xingdi Yuan, Tong
Wang, Daqing He
- Abstract要約: FacetSumは、Emeraldのジャーナル記事上に構築された顔の要約ベンチマークである。
データセットの分析と実験結果から,構造を要約に組み込むことの重要性が明らかになった。
我々は、FacetSumが要約研究のさらなる進歩を促し、NLPシステムの開発を促進すると信じている。
- 参考スコア(独自算出の注目度): 30.09742243490895
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Faceted summarization provides briefings of a document from different
perspectives. Readers can quickly comprehend the main points of a long document
with the help of a structured outline. However, little research has been
conducted on this subject, partially due to the lack of large-scale faceted
summarization datasets. In this study, we present FacetSum, a faceted
summarization benchmark built on Emerald journal articles, covering a diverse
range of domains. Different from traditional document-summary pairs, FacetSum
provides multiple summaries, each targeted at specific sections of a long
document, including the purpose, method, findings, and value. Analyses and
empirical results on our dataset reveal the importance of bringing structure
into summaries. We believe FacetSum will spur further advances in summarization
research and foster the development of NLP systems that can leverage the
structured information in both long texts and summaries.
- Abstract(参考訳): faceted summarizationは、異なる視点からドキュメントのブリーフィングを提供する。
読者は構造化アウトラインの助けを借りて、長いドキュメントの主要なポイントを素早く理解することができる。
しかしながら、大規模な顔付き要約データセットが欠如していることから、このテーマに関する研究はほとんど行われていない。
本研究では,エメラルド誌の記事上に構築された顔要約ベンチマークであるFacetSumについて述べる。
従来の文書と要約のペアとは異なり、facetsumは複数の要約を提供し、それぞれが目的、方法、発見、価値を含む長い文書の特定のセクションをターゲットにしている。
データセットの分析と実験結果から,構造を要約に組み込むことの重要性が明らかになった。
我々は、FacetSumが要約研究のさらなる進歩を促し、長文と要約の両方において構造化情報を活用するNLPシステムの開発を促進すると信じている。
関連論文リスト
- Leveraging Collection-Wide Similarities for Unsupervised Document Structure Extraction [61.998789448260005]
本稿では,コレクション内の文書の典型的構造を特定することを提案する。
任意のヘッダのパラフレーズを抽象化し、各トピックを各ドキュメントのロケーションにグルーピングします。
文書間の類似性を利用した教師なしグラフベース手法を開発した。
論文 参考訳(メタデータ) (2024-02-21T16:22:21Z) - Generating a Structured Summary of Numerous Academic Papers: Dataset and
Method [20.90939310713561]
本稿では,各トピックに関する多数の学術論文の包括的な要約を生成するための,最初の大規模データセットであるBigSurveyを提案する。
我々は,7万件以上の調査論文から対象要約を収集し,その430万件の参考論文の要約を入力文書として活用する。
数十の入力文書から多種多様な内容を整理するために,カテゴリベースアライメント・スパース・トランスフォーマー (CAST) と呼ばれる要約手法を提案する。
論文 参考訳(メタデータ) (2023-02-09T11:42:07Z) - An Empirical Survey on Long Document Summarization: Datasets, Models and
Metrics [33.655334920298856]
本稿では,長期文書要約研究の概要について概説する。
我々は、現在の研究の進展に対する視点を広げるために、実証分析を行う。
論文 参考訳(メタデータ) (2022-07-03T02:57:22Z) - TSTR: Too Short to Represent, Summarize with Details! Intro-Guided
Extended Summary Generation [22.738731393540633]
学術文献など、原文が比較的長い領域では、そのような要約は一般的で粗い概観を超越することはできない。
本稿では,文書の紹介情報を利用した抽出要約器TSTRを提案する。
論文 参考訳(メタデータ) (2022-06-02T02:45:31Z) - Unsupervised Summarization with Customized Granularities [76.26899748972423]
本稿では,最初の教師なし多粒度要約フレームワークであるGranuSumを提案する。
異なる数のイベントを入力することで、GranuSumは教師なしの方法で複数の粒度のサマリーを生成することができる。
論文 参考訳(メタデータ) (2022-01-29T05:56:35Z) - Modeling Endorsement for Multi-Document Abstractive Summarization [10.166639983949887]
単一文書の要約と多文書の要約の重大な違いは、文書の中で健全なコンテンツがどのように現れるかである。
本稿では,複数文書要約における文書間補完効果とその活用をモデル化する。
提案手法は各文書から合成を生成し,他の文書から有意な内容を識別する支援者として機能する。
論文 参考訳(メタデータ) (2021-10-15T03:55:42Z) - On Generating Extended Summaries of Long Documents [16.149617108647707]
本稿では,長論文の拡張要約を生成する新しい手法を提案する。
本手法は,文書の階層構造を利用して抽出要約モデルに組み込む。
分析の結果,提案手法は,要約文に好適な抽出確率分布を調整できることが示唆された。
論文 参考訳(メタデータ) (2020-12-28T08:10:28Z) - Summarizing Text on Any Aspects: A Knowledge-Informed Weakly-Supervised
Approach [89.56158561087209]
文書に関連する任意の側面を要約する。
監視データがないため、我々は新しい弱い監督構築法とアスペクト・モデリング・スキームを開発した。
実験により,本手法は実文書と合成文書の両方を要約することで,性能の向上を図っている。
論文 参考訳(メタデータ) (2020-10-14T03:20:46Z) - From Standard Summarization to New Tasks and Beyond: Summarization with
Manifold Information [77.89755281215079]
テキスト要約は、原文書の短く凝縮した版を作成することを目的とした研究分野である。
現実世界のアプリケーションでは、ほとんどのデータは平易なテキスト形式ではない。
本稿では,現実のアプリケーションにおけるこれらの新しい要約タスクとアプローチについて調査する。
論文 参考訳(メタデータ) (2020-05-10T14:59:36Z) - Screenplay Summarization Using Latent Narrative Structure [78.45316339164133]
本稿では,物語の基盤となる構造を一般教師なし・教師付き抽出要約モデルに明示的に組み込むことを提案する。
重要な物語イベント(転回点)の観点で物語構造を定式化し、脚本を要約するために潜伏状態として扱う。
シーンレベルの要約ラベルを付加したテレビ画面のCSIコーパスの実験結果から,潜角点がCSIエピソードの重要な側面と相関していることが判明した。
論文 参考訳(メタデータ) (2020-04-27T11:54:19Z) - The Shmoop Corpus: A Dataset of Stories with Loosely Aligned Summaries [72.48439126769627]
個々の章ごとに詳細なマルチパラグラフの要約と組み合わせた231ストーリーのデータセットであるShmoop Corpusを紹介します。
コーパスから、クローズ形式の質問応答や抽象的要約の簡易な形式を含む共通のNLPタスクのセットを構築する。
このコーパスのユニークな構造は、マシンストーリーの理解をより親しみやすいものにするための重要な基盤となると信じている。
論文 参考訳(メタデータ) (2019-12-30T21:03:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。