Language-Driven Image Style Transfer
- URL: http://arxiv.org/abs/2106.00178v1
- Date: Tue, 1 Jun 2021 01:58:50 GMT
- Title: Language-Driven Image Style Transfer
- Authors: Tsu-Jui Fu, Xin Eric Wang, William Yang Wang
- Abstract summary: We introduce a new task -- language-driven image style transfer (textttLDIST) -- to manipulate the style of a content image, guided by a text.
The discriminator considers the correlation between language and patches of style images or transferred results to jointly embed style instructions.
Experiments show that our CLVA is effective and achieves superb transferred results on textttLDIST.
- Score: 72.36790598245096
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite having promising results, style transfer, which requires preparing
style images in advance, may result in lack of creativity and accessibility.
Following human instruction, on the other hand, is the most natural way to
perform artistic style transfer that can significantly improve controllability
for visual effect applications. We introduce a new task -- language-driven
image style transfer (\texttt{LDIST}) -- to manipulate the style of a content
image, guided by a text. We propose contrastive language visual artist (CLVA)
that learns to extract visual semantics from style instructions and accomplish
\texttt{LDIST} by the patch-wise style discriminator. The discriminator
considers the correlation between language and patches of style images or
transferred results to jointly embed style instructions. CLVA further compares
contrastive pairs of content image and style instruction to improve the mutual
relativeness between transfer results. The transferred results from the same
content image can preserve consistent content structures. Besides, they should
present analogous style patterns from style instructions that contain similar
visual semantics. The experiments show that our CLVA is effective and achieves
superb transferred results on \texttt{LDIST}.
Related papers
- Bridging Text and Image for Artist Style Transfer via Contrastive Learning [21.962361974579036]
We propose a Contrastive Learning for Artistic Style Transfer (CLAST) to control arbitrary style transfer.
We introduce a supervised contrastive training strategy to effectively extract style descriptions from the image-text model.
We also propose a novel and efficient adaLN based state space models that explore style-content fusion.
arXiv Detail & Related papers (2024-10-12T15:27:57Z) - StylerDALLE: Language-Guided Style Transfer Using a Vector-Quantized
Tokenizer of a Large-Scale Generative Model [64.26721402514957]
We propose StylerDALLE, a style transfer method that uses natural language to describe abstract art styles.
Specifically, we formulate the language-guided style transfer task as a non-autoregressive token sequence translation.
To incorporate style information, we propose a Reinforcement Learning strategy with CLIP-based language supervision.
arXiv Detail & Related papers (2023-03-16T12:44:44Z) - A Unified Arbitrary Style Transfer Framework via Adaptive Contrastive
Learning [84.8813842101747]
Unified Contrastive Arbitrary Style Transfer (UCAST) is a novel style representation learning and transfer framework.
We present an adaptive contrastive learning scheme for style transfer by introducing an input-dependent temperature.
Our framework consists of three key components, i.e., a parallel contrastive learning scheme for style representation and style transfer, a domain enhancement module for effective learning of style distribution, and a generative network for style transfer.
arXiv Detail & Related papers (2023-03-09T04:35:00Z) - DSI2I: Dense Style for Unpaired Image-to-Image Translation [70.93865212275412]
Unpaired exemplar-based image-to-image (UEI2I) translation aims to translate a source image to a target image domain with the style of a target image exemplar.
We propose to represent style as a dense feature map, allowing for a finer-grained transfer to the source image without requiring any external semantic information.
Our results show that the translations produced by our approach are more diverse, preserve the source content better, and are closer to the exemplars when compared to the state-of-the-art methods.
arXiv Detail & Related papers (2022-12-26T18:45:25Z) - DiffStyler: Controllable Dual Diffusion for Text-Driven Image
Stylization [66.42741426640633]
DiffStyler is a dual diffusion processing architecture to control the balance between the content and style of diffused results.
We propose a content image-based learnable noise on which the reverse denoising process is based, enabling the stylization results to better preserve the structure information of the content image.
arXiv Detail & Related papers (2022-11-19T12:30:44Z) - Domain Enhanced Arbitrary Image Style Transfer via Contrastive Learning [84.8813842101747]
Contrastive Arbitrary Style Transfer (CAST) is a new style representation learning and style transfer method via contrastive learning.
Our framework consists of three key components, i.e., a multi-layer style projector for style code encoding, a domain enhancement module for effective learning of style distribution, and a generative network for image style transfer.
arXiv Detail & Related papers (2022-05-19T13:11:24Z) - Name Your Style: An Arbitrary Artist-aware Image Style Transfer [38.41608300670523]
We propose a text-driven image style transfer (TxST) that leverages advanced image-text encoders to control arbitrary style transfer.
We introduce a contrastive training strategy to effectively extract style descriptions from the image-text model.
We also propose a novel and efficient attention module that explores cross-attentions to fuse style and content features.
arXiv Detail & Related papers (2022-02-28T06:21:38Z) - CLIPstyler: Image Style Transfer with a Single Text Condition [34.24876359759408]
Existing neural style transfer methods require reference style images to transfer texture information of style images to content images.
We propose a new framework that enables a style transfer without' a style image, but only with a text description of the desired style.
arXiv Detail & Related papers (2021-12-01T09:48:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.