A Unified Arbitrary Style Transfer Framework via Adaptive Contrastive
Learning
- URL: http://arxiv.org/abs/2303.12710v2
- Date: Thu, 23 Mar 2023 14:13:05 GMT
- Title: A Unified Arbitrary Style Transfer Framework via Adaptive Contrastive
Learning
- Authors: Yuxin Zhang, Fan Tang, Weiming Dong, Haibin Huang, Chongyang Ma,
Tong-Yee Lee, Changsheng Xu
- Abstract summary: Unified Contrastive Arbitrary Style Transfer (UCAST) is a novel style representation learning and transfer framework.
We present an adaptive contrastive learning scheme for style transfer by introducing an input-dependent temperature.
Our framework consists of three key components, i.e., a parallel contrastive learning scheme for style representation and style transfer, a domain enhancement module for effective learning of style distribution, and a generative network for style transfer.
- Score: 84.8813842101747
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present Unified Contrastive Arbitrary Style Transfer (UCAST), a novel
style representation learning and transfer framework, which can fit in most
existing arbitrary image style transfer models, e.g., CNN-based, ViT-based, and
flow-based methods. As the key component in image style transfer tasks, a
suitable style representation is essential to achieve satisfactory results.
Existing approaches based on deep neural network typically use second-order
statistics to generate the output. However, these hand-crafted features
computed from a single image cannot leverage style information sufficiently,
which leads to artifacts such as local distortions and style inconsistency. To
address these issues, we propose to learn style representation directly from a
large amount of images based on contrastive learning, by taking the
relationships between specific styles and the holistic style distribution into
account. Specifically, we present an adaptive contrastive learning scheme for
style transfer by introducing an input-dependent temperature. Our framework
consists of three key components, i.e., a parallel contrastive learning scheme
for style representation and style transfer, a domain enhancement module for
effective learning of style distribution, and a generative network for style
transfer. We carry out qualitative and quantitative evaluations to show that
our approach produces superior results than those obtained via state-of-the-art
methods.
Related papers
- DiffuseST: Unleashing the Capability of the Diffusion Model for Style Transfer [13.588643982359413]
Style transfer aims to fuse the artistic representation of a style image with the structural information of a content image.
Existing methods train specific networks or utilize pre-trained models to learn content and style features.
We propose a novel and training-free approach for style transfer, combining textual embedding with spatial features.
arXiv Detail & Related papers (2024-10-19T06:42:43Z) - Rethink Arbitrary Style Transfer with Transformer and Contrastive Learning [11.900404048019594]
In this paper, we introduce an innovative technique to improve the quality of stylized images.
Firstly, we propose Style Consistency Instance Normalization (SCIN), a method to refine the alignment between content and style features.
In addition, we have developed an Instance-based Contrastive Learning (ICL) approach designed to understand relationships among various styles.
arXiv Detail & Related papers (2024-04-21T08:52:22Z) - Style Injection in Diffusion: A Training-free Approach for Adapting Large-scale Diffusion Models for Style Transfer [19.355744690301403]
We introduce a novel artistic style transfer method based on a pre-trained large-scale diffusion model without any optimization.
Our experimental results demonstrate that our proposed method surpasses state-of-the-art methods in both conventional and diffusion-based style transfer baselines.
arXiv Detail & Related papers (2023-12-11T09:53:12Z) - DiffStyler: Controllable Dual Diffusion for Text-Driven Image
Stylization [66.42741426640633]
DiffStyler is a dual diffusion processing architecture to control the balance between the content and style of diffused results.
We propose a content image-based learnable noise on which the reverse denoising process is based, enabling the stylization results to better preserve the structure information of the content image.
arXiv Detail & Related papers (2022-11-19T12:30:44Z) - Learning Graph Neural Networks for Image Style Transfer [131.73237185888215]
State-of-the-art parametric and non-parametric style transfer approaches are prone to either distorted local style patterns due to global statistics alignment, or unpleasing artifacts resulting from patch mismatching.
In this paper, we study a novel semi-parametric neural style transfer framework that alleviates the deficiency of both parametric and non-parametric stylization.
arXiv Detail & Related papers (2022-07-24T07:41:31Z) - Domain Enhanced Arbitrary Image Style Transfer via Contrastive Learning [84.8813842101747]
Contrastive Arbitrary Style Transfer (CAST) is a new style representation learning and style transfer method via contrastive learning.
Our framework consists of three key components, i.e., a multi-layer style projector for style code encoding, a domain enhancement module for effective learning of style distribution, and a generative network for image style transfer.
arXiv Detail & Related papers (2022-05-19T13:11:24Z) - STALP: Style Transfer with Auxiliary Limited Pairing [36.23393954839379]
We present an approach to example-based stylization of images that uses a single pair of a source image and its stylized counterpart.
We demonstrate how to train an image translation network that can perform real-time semantically meaningful style transfer to a set of target images.
arXiv Detail & Related papers (2021-10-20T11:38:41Z) - Arbitrary Style Transfer via Multi-Adaptation Network [109.6765099732799]
A desired style transfer, given a content image and referenced style painting, would render the content image with the color tone and vivid stroke patterns of the style painting.
A new disentanglement loss function enables our network to extract main style patterns and exact content structures to adapt to various input images.
arXiv Detail & Related papers (2020-05-27T08:00:22Z) - Parameter-Free Style Projection for Arbitrary Style Transfer [64.06126075460722]
This paper proposes a new feature-level style transformation technique, named Style Projection, for parameter-free, fast, and effective content-style transformation.
This paper further presents a real-time feed-forward model to leverage Style Projection for arbitrary image style transfer.
arXiv Detail & Related papers (2020-03-17T13:07:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.