論文の概要: Reinforce Security: A Model-Free Approach Towards Secure Wiretap Coding
- arxiv url: http://arxiv.org/abs/2106.00343v1
- Date: Tue, 1 Jun 2021 09:30:15 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-02 21:53:10.566483
- Title: Reinforce Security: A Model-Free Approach Towards Secure Wiretap Coding
- Title(参考訳): Reinforce Security: セキュアなWiretapコーディングに向けたモデルフリーアプローチ
- Authors: Rick Fritschek, Rafael F. Schaefer, Gerhard Wunder
- Abstract要約: セキュアな符号化関数を近似する深層学習技術は、無線通信にかなりの関心を集めている。
本稿では,強化学習のアプローチについて検討し,特にニューラルネットワークを用いたセキュアエンコーディングのモデルフリーアプローチに対するポリシー勾配法について検討する。
- 参考スコア(独自算出の注目度): 30.74553644848033
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The use of deep learning-based techniques for approximating secure encoding
functions has attracted considerable interest in wireless communications due to
impressive results obtained for general coding and decoding tasks for wireless
communication systems. Of particular importance is the development of
model-free techniques that work without knowledge about the underlying channel.
Such techniques utilize for example generative adversarial networks to estimate
and model the conditional channel distribution, mutual information estimation
as a reward function, or reinforcement learning. In this paper, the approach of
reinforcement learning is studied and, in particular, the policy gradient
method for a model-free approach of neural network-based secure encoding is
investigated. Previously developed techniques for enforcing a certain co-set
structure on the encoding process can be combined with recent reinforcement
learning approaches. This new approach is evaluated by extensive simulations,
and it is demonstrated that the resulting decoding performance of an
eavesdropper is capped at a certain error level.
- Abstract(参考訳): セキュアな符号化関数を近似するためのディープラーニングベースの技術は、無線通信システムの一般的なコーディングとデコードタスクで得られた素晴らしい結果によって、無線通信にかなりの関心を集めている。
特に重要なのは、基礎となるチャネルを知らずに機能するモデルフリー技術の開発である。
このような手法は,例えば,条件付きチャネル分布の推定とモデル化,報奨関数としての相互情報推定,強化学習などに用いる。
本稿では,強化学習のアプローチについて検討し,特にニューラルネットワークを用いたセキュアエンコーディングのモデルフリーアプローチのためのポリシー勾配法について検討する。
従来開発された符号化プロセス上のコセット構造を強制する手法は、最近の強化学習手法と組み合わせることができる。
この新しい手法は広範囲のシミュレーションにより評価され, 盗聴者の復号性能が一定の誤差レベルに低下することが示されている。
関連論文リスト
- Post-Hoc Robustness Enhancement in Graph Neural Networks with Conditional Random Fields [19.701706244728037]
グラフニューラルネットワーク(GNN)は、敵の攻撃に弱いことが示されている。
本研究では,推論段階におけるGNNの堅牢性向上を目的としたポストホックアプローチであるRobustCRFを紹介する。
論文 参考訳(メタデータ) (2024-11-08T08:26:42Z) - A Rate-Distortion View of Uncertainty Quantification [36.85921945174863]
教師付き学習では、入力がトレーニングデータに近接していることを理解することは、モデルが信頼できる予測に達する十分な証拠を持っているかどうかを判断するのに役立つ。
本稿では,この特性でディープニューラルネットワークを強化するための新しい手法であるDistance Aware Bottleneck (DAB)を紹介する。
論文 参考訳(メタデータ) (2024-06-16T01:33:22Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
トレーニングデータに制限がある現実的なシナリオでは、データ内の多くの予測信号は、データ取得のバイアスからより多く得る。
我々は,相互情報制約の下で,より広い範囲の摂動をカバーできる敵の脅威モデルを考える。
そこで本研究では,その目的を実現するためのオートエンコーダベーストレーニングと,提案したハイブリッド識別世代学習を促進するための実用的なエンコーダ設計を提案する。
論文 参考訳(メタデータ) (2023-03-24T16:03:21Z) - Quantization-aware Interval Bound Propagation for Training Certifiably
Robust Quantized Neural Networks [58.195261590442406]
我々は、逆向きに頑健な量子化ニューラルネットワーク(QNN)の訓練と証明の課題について検討する。
近年の研究では、浮動小数点ニューラルネットワークが量子化後の敵攻撃に対して脆弱であることが示されている。
本稿では、堅牢なQNNをトレーニングするための新しい方法であるQA-IBP(quantization-aware interval bound propagation)を提案する。
論文 参考訳(メタデータ) (2022-11-29T13:32:38Z) - Hierarchically Structured Task-Agnostic Continual Learning [0.0]
本研究では,連続学習のタスク非依存的な視点を取り入れ,階層的情報理論の最適性原理を考案する。
我々は,情報処理経路の集合を作成することで,忘れを緩和する,Mixture-of-Variational-Experts層と呼ばれるニューラルネットワーク層を提案する。
既存の連続学習アルゴリズムのようにタスク固有の知識を必要としない。
論文 参考訳(メタデータ) (2022-11-14T19:53:15Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
本研究では,フレーバータグ付けアルゴリズムの脆弱性について,敵攻撃による検証を行った。
シミュレーション攻撃の影響を緩和する対人訓練戦略を提案する。
論文 参考訳(メタデータ) (2022-03-25T19:57:19Z) - Verified Probabilistic Policies for Deep Reinforcement Learning [6.85316573653194]
我々は、深い強化学習のための確率的政策を検証する問題に取り組む。
本稿では,マルコフ決定プロセスの間隔に基づく抽象的アプローチを提案する。
本稿では,抽象的解釈,混合整数線形プログラミング,エントロピーに基づく洗練,確率的モデルチェックを用いて,これらのモデルを構築・解決する手法を提案する。
論文 参考訳(メタデータ) (2022-01-10T23:55:04Z) - Feedback Coding for Active Learning [15.239252118069762]
アクティブなサンプル選択タスクに最適なトランスポートベースのフィードバックコーディングスキームを開発しています。
各種データセット上でAPMを評価し,既存のアクティブラーニング手法に匹敵する学習性能を示す。
論文 参考訳(メタデータ) (2021-02-28T23:00:34Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
本稿では、異なる安全でない入力に対してモデルを強化するために、カバレッジパラダイムに基づく軽量な監視アーキテクチャを提案する。
実験結果から,提案手法は強力な対向例とアウト・オブ・ディストリビューション・インプットの両方を検出するのに有効であることが示唆された。
論文 参考訳(メタデータ) (2021-01-28T16:38:26Z) - Model-Based Machine Learning for Communications [110.47840878388453]
モデルベースのアルゴリズムと機械学習をハイレベルな視点で組み合わせるための既存の戦略を見直します。
通信受信機の基本的なタスクの一つであるシンボル検出に注目する。
論文 参考訳(メタデータ) (2021-01-12T19:55:34Z) - FedRec: Federated Learning of Universal Receivers over Fading Channels [92.15358738530037]
本稿では,ダウンリンクフェージングチャネルに対するニューラルネットワークを用いたシンボル検出手法を提案する。
複数のユーザが協力して、普遍的なデータ駆動型検出器を学習する。
得られた受信機の性能は、フェーディング統計の知識を必要とせずに、様々なチャネル条件下でMAP性能に近づくことを示す。
論文 参考訳(メタデータ) (2020-11-14T11:29:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。