論文の概要: Comprehensive Validation of Automated Whole Body Skeletal Muscle,
Adipose Tissue, and Bone Segmentation from 3D CT images for Body Composition
Analysis: Towards Extended Body Composition
- arxiv url: http://arxiv.org/abs/2106.00652v2
- Date: Thu, 3 Jun 2021 07:14:35 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-04 12:29:24.965519
- Title: Comprehensive Validation of Automated Whole Body Skeletal Muscle,
Adipose Tissue, and Bone Segmentation from 3D CT images for Body Composition
Analysis: Towards Extended Body Composition
- Title(参考訳): 体組成解析のための3次元ct画像からの全身骨格筋・脂肪組織・骨切片の自動測定の包括的検証 : 拡張体組成に向けて
- Authors: Da Ma, Vincent Chow, Karteek Popuri, Mirza Faisal Beg
- Abstract要約: ディープラーニングのような強力な人工知能のツールは、3D画像全体を分割し、すべての内部解剖の正確な測定を生成することができるようになった。
これにより、これまで存在した深刻なボトルネック、すなわち手動セグメンテーションの必要性の克服が可能になる。
これらの測定は不可能であったため、フィールドを非常に小さく限られたサブセットに制限した。
- 参考スコア(独自算出の注目度): 0.6176955945418618
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The latest advances in computer-assisted precision medicine are making it
feasible to move from population-wide models that are useful to discover
aggregate patterns that hold for group-based analysis to patient-specific
models that can drive patient-specific decisions with regard to treatment
choices, and predictions of outcomes of treatment. Body Composition is
recognized as an important driver and risk factor for a wide variety of
diseases, as well as a predictor of individual patient-specific clinical
outcomes to treatment choices or surgical interventions. 3D CT images are
routinely acquired in the oncological worklows and deliver accurate rendering
of internal anatomy and therefore can be used opportunistically to assess the
amount of skeletal muscle and adipose tissue compartments. Powerful tools of
artificial intelligence such as deep learning are making it feasible now to
segment the entire 3D image and generate accurate measurements of all internal
anatomy. These will enable the overcoming of the severe bottleneck that existed
previously, namely, the need for manual segmentation, which was prohibitive to
scale to the hundreds of 2D axial slices that made up a 3D volumetric image.
Automated tools such as presented here will now enable harvesting whole-body
measurements from 3D CT or MRI images, leading to a new era of discovery of the
drivers of various diseases based on individual tissue, organ volume, shape,
and functional status. These measurements were hitherto unavailable thereby
limiting the field to a very small and limited subset. These discoveries and
the potential to perform individual image segmentation with high speed and
accuracy are likely to lead to the incorporation of these 3D measures into
individual specific treatment planning models related to nutrition, aging,
chemotoxicity, surgery and survival after the onset of a major disease such as
cancer.
- Abstract(参考訳): コンピュータ支援精密医療の最近の進歩は、グループベースの分析に有効な集合パターンを見つけるのに役立つ集団全体モデルから、治療の選択や治療結果の予測に関して患者固有の決定を導くことができる患者固有のモデルへと移行しやすくしている。
身体構成は、様々な疾患にとって重要な要因であり、また治療選択や外科的介入に対する患者固有の臨床結果の予測因子として認識されている。
3次元CT画像は、腫瘍学的ワークローで日常的に取得され、内部解剖の正確なレンダリングを提供するため、骨格筋の量や組織区画の分別を同時に評価することができる。
ディープラーニングのような強力な人工知能のツールは、3D画像全体を分割し、すべての内部解剖を正確に測定することを可能にする。
これにより、それまで存在した深刻なボトルネック、すなわち3dボリュームイメージを構成する数百の2d軸スライスにスケールすることを禁じられていた手動セグメンテーションの必要性が克服される。
今回紹介したような自動化ツールは、3dctやmri画像から全身の計測値を取り出すことができるようになり、個々の組織、臓器容積、形状、機能状態に基づいて様々な疾患のドライバが発見される新しい時代へと繋がる。
これらの測定は不可能であったため、フィールドを非常に小さく限られたサブセットに制限した。
これらの発見と、高速かつ精度で個々の画像セグメンテーションを行う能力は、がんなどの主要な疾患の発症後の栄養、老化、化学療法、手術、生存に関連する個々の治療計画モデルにこれらの3D尺度を組み込むことにつながる可能性が高い。
関連論文リスト
- 3D-CT-GPT: Generating 3D Radiology Reports through Integration of Large Vision-Language Models [51.855377054763345]
本稿では,VQAに基づく医用視覚言語モデルである3D-CT-GPTについて紹介する。
パブリックデータセットとプライベートデータセットの両方の実験により、3D-CT-GPTはレポートの正確さと品質という点で既存の手法を著しく上回っていることが示された。
論文 参考訳(メタデータ) (2024-09-28T12:31:07Z) - SAM3D: Zero-Shot Semi-Automatic Segmentation in 3D Medical Images with the Segment Anything Model [3.2554912675000818]
SAM3Dは,既存のセグメンテーションモデル上に構築された3次元画像の半自動ゼロショットセグメンテーションのための新しいアプローチである。
ユーザが3Dポリラインでプロンプトし、複数の軸に沿ってボリュームスライスし、事前訓練されたモデルでスライスワイド推論を行い、3Dで再構成と洗練を行う4段階の戦略で、3D画像の高速かつ正確なセグメンテーションを実現する。
論文 参考訳(メタデータ) (2024-05-10T19:26:17Z) - QUBIQ: Uncertainty Quantification for Biomedical Image Segmentation Challenge [93.61262892578067]
医用画像分割作業の不確実性、特にラター間変動性は重要な課題である。
この可変性は、自動セグメンテーションアルゴリズムの開発と評価に直接影響を及ぼす。
バイオメディカル画像量化チャレンジ(QUBIQ)における不確実性の定量化のベンチマーク結果を報告する。
論文 参考訳(メタデータ) (2024-03-19T17:57:24Z) - 3D Vertebrae Measurements: Assessing Vertebral Dimensions in Human Spine
Mesh Models Using Local Anatomical Vertebral Axes [0.4499833362998489]
腰椎と胸椎の3次元メッシュを用いた脊椎形態計測の新しい完全自動計測法を提案する。
以上の結果より, 平均絶対誤差(MAE)が1.09mmの低分解能患者特異的脊椎メッシュを精度良く測定できることが示唆された。
これらの画像が利用可能であれば, 3次元脊椎モデルを用いて得られた測定結果を, 元の医用画像に正確に再投影できることを示す。
論文 参考訳(メタデータ) (2024-02-02T14:52:41Z) - Weakly Supervised AI for Efficient Analysis of 3D Pathology Samples [6.381153836752796]
3次元組織画像処理のためのボリュームブロック解析(MAMBA)のためのModality-Agnostic Multiple Case Learningを提案する。
3Dブロックベースのアプローチでは、MAMBAは2Dの単一スライスによる予測よりも優れた受信特性曲線(AUC)の0.86と0.74の領域を達成している。
さらに, 組織体積が大きくなることで予後が向上し, サンプリングバイアスによるリスク予測のばらつきが軽減されることが示唆された。
論文 参考訳(メタデータ) (2023-07-27T14:48:02Z) - 3DSAM-adapter: Holistic adaptation of SAM from 2D to 3D for promptable tumor segmentation [52.699139151447945]
医用画像の領域分割を行うために, SAMを2次元から3次元に変換する新しい適応法を提案する。
本モデルでは, 腎腫瘍, 膵腫瘍, 大腸癌の3つのタスクのうち8.25%, 29.87%, 10.11%の3つのタスクにおいて, ドメイン・オブ・ザ・アーティヴ・メディカル・イメージ・セグメンテーション・モデルより優れ, 肝腫瘍セグメンテーションでも同様の性能が得られる。
論文 参考訳(メタデータ) (2023-06-23T12:09:52Z) - BOSS: Bones, Organs and Skin Shape Model [10.50175010474078]
我々は,CT画像から学習した皮膚,内臓,骨を結合した変形可能な人体形状とポーズモデルを提案する。
確率的PCAを用いて、ポーズ正規化空間の統計的変動をモデル化することにより、本手法は身体の全体像を提供する。
論文 参考訳(メタデータ) (2023-03-08T22:31:24Z) - Monitoring of Pigmented Skin Lesions Using 3D Whole Body Imaging [14.544274849288952]
皮膚病変の迅速評価とマッピングを可能にする3次元全身イメージングプロトタイプを提案する。
モジュラーカメラリグは、体全体をスキャンするために複数の角度から同期した画像を自動でキャプチャするように設計されている。
我々は,深部畳み込みニューラルネットワークに基づく3次元体像再構成,データ処理,皮膚病変検出のためのアルゴリズムを開発した。
論文 参考訳(メタデータ) (2022-05-14T15:24:06Z) - A unified 3D framework for Organs at Risk Localization and Segmentation
for Radiation Therapy Planning [56.52933974838905]
現在の医療ワークフローは、OAR(Organs-at-risk)のマニュアル記述を必要とする
本研究は,OARローカライゼーション・セグメンテーションのための統合された3Dパイプラインの導入を目的とする。
提案手法は医用画像に固有の3Dコンテキスト情報の活用を可能にする。
論文 参考訳(メタデータ) (2022-03-01T17:08:41Z) - Explainable multiple abnormality classification of chest CT volumes with
AxialNet and HiResCAM [89.2175350956813]
本稿では,容積医用画像における多変量分類の課題について紹介する。
本稿では,複数のインスタンス学習型畳み込みニューラルネットワークであるAxialNetを提案する。
そして、HiResCAMと3D許容領域を利用した新しいマスクロスにより、モデルの学習を改善することを目指す。
論文 参考訳(メタデータ) (2021-11-24T01:14:33Z) - iPhantom: a framework for automated creation of individualized
computational phantoms and its application to CT organ dosimetry [58.943644554192936]
本研究の目的は、患者固有の幻覚やデジタル双眼鏡の自動作成のための新しいフレームワーク、iPhantomを開発し、検証することである。
この枠組みは、個々の患者のCT画像における放射線感受性臓器への放射線線量を評価するために応用される。
iPhantomは、アンカーオルガンのDice similarity Coefficients (DSC) >0.6の精度で全ての臓器の位置を正確に予測し、他のオルガンのDSCは0.3-0.9である。
論文 参考訳(メタデータ) (2020-08-20T01:50:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。