論文の概要: Solving Arithmetic Word Problems with Transformers and Preprocessing of
Problem Text
- arxiv url: http://arxiv.org/abs/2106.00893v1
- Date: Wed, 2 Jun 2021 02:12:45 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-03 14:36:29.458325
- Title: Solving Arithmetic Word Problems with Transformers and Preprocessing of
Problem Text
- Title(参考訳): トランスフォーマによる算術語問題の解法と問題テキストの前処理
- Authors: Kaden Griffith and Jugal Kalita
- Abstract要約: 本稿では,代名詞問題から代名詞,接頭辞,接頭辞における等価な算術式への変換を訓練したTransformerネットワークの利用について概説する。
その結果, 従来報告した4つのデータセットのうち3つに比較して, 精度が20ポイント以上向上していることが判明した。
- 参考スコア(独自算出の注目度): 4.061135251278187
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper outlines the use of Transformer networks trained to translate math
word problems to equivalent arithmetic expressions in infix, prefix, and
postfix notations. We compare results produced by many neural configurations
and find that most configurations outperform previously reported approaches on
three of four datasets with significant increases in accuracy of over 20
percentage points. The best neural approaches boost accuracy by 30% when
compared to the previous state-of-the-art on some datasets.
- Abstract(参考訳): 本稿では, infix, prefix, postfix 表記法において, 数学用語問題を等価な算術式に変換するために訓練されたトランスフォーマーネットワークの利用について概説する。
我々は、多くの神経構成の結果を比較し、4つのデータセットのうち3つで報告されたアプローチよりも多くの構成が優れており、20パーセンテージ以上の精度が大幅に向上していることを見出した。
最高のニューラルネットワークアプローチは、いくつかのデータセットの以前の最先端と比較して精度を30%向上させる。
関連論文リスト
- Pruning By Explaining Revisited: Optimizing Attribution Methods to Prune CNNs and Transformers [14.756988176469365]
計算要求の削減と効率の向上のための効果的なアプローチは、ディープニューラルネットワークの不要なコンポーネントを創り出すことである。
これまでの研究では、eXplainable AIの分野からの帰属法が、最も関係の低いネットワークコンポーネントを数ショットで抽出し、プルークする効果的な手段であることが示された。
論文 参考訳(メタデータ) (2024-08-22T17:35:18Z) - Positional Description Matters for Transformers Arithmetic [58.4739272381373]
トランスフォーマーは、大きな能力にもかかわらず、算術的なタスクに干渉することが多い。
位置エンコーディングを直接修正するか、あるいは算術タスクの表現を変更して、標準的な位置エンコーディングを異なる方法で活用することで、問題を解決する方法をいくつか提案する。
論文 参考訳(メタデータ) (2023-11-22T00:31:01Z) - Teaching Arithmetic to Small Transformers [39.72665384986095]
本研究では,小形変圧器が算術演算を効率的に学習する方法について検討する。
まず,従来の学習データが算術学習に最も効果的でないことを示す。
次に、中間ステップの結果を含むチェーン・オブ・シンクスタイルのデータをトレーニングします。
論文 参考訳(メタデータ) (2023-07-07T04:33:31Z) - Peeling the Onion: Hierarchical Reduction of Data Redundancy for
Efficient Vision Transformer Training [110.79400526706081]
ビジョントランス (ViT) は近年多くのアプリケーションで成功を収めているが、その計算量とメモリ使用量によって一般化が制限されている。
従来の圧縮アルゴリズムは通常、事前訓練された高密度モデルから始まり、効率的な推論のみに焦点を当てる。
本稿では,3つのスパースの観点から,Tri-Level E-ViTと呼ばれるエンドツーエンドの効率的なトレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2022-11-19T21:15:47Z) - Towards Better Out-of-Distribution Generalization of Neural Algorithmic
Reasoning Tasks [51.8723187709964]
ニューラルネットワーク推論タスクのOOD一般化について検討する。
目標は、ディープニューラルネットワークを使用して入出力ペアからアルゴリズムを学ぶことである。
論文 参考訳(メタデータ) (2022-11-01T18:33:20Z) - Feature transforms for image data augmentation [74.12025519234153]
画像分類において、多くの拡張アプローチは単純な画像操作アルゴリズムを利用する。
本研究では,14種類の拡張アプローチを組み合わせて生成した画像を追加することで,データレベルでのアンサンブルを構築する。
事前トレーニングされたResNet50ネットワークは、各拡張メソッドから派生した画像を含むトレーニングセットに基づいて微調整される。
論文 参考訳(メタデータ) (2022-01-24T14:12:29Z) - HETFORMER: Heterogeneous Transformer with Sparse Attention for Long-Text
Extractive Summarization [57.798070356553936]
HETFORMERはトランスフォーマーをベースとした事前学習モデルであり、抽出要約のための多粒度スパースアテンションを持つ。
単一文書と複数文書の要約タスクの実験から,HETFORMERがルージュF1の最先端性能を達成することが示された。
論文 参考訳(メタデータ) (2021-10-12T22:42:31Z) - The Cascade Transformer: an Application for Efficient Answer Sentence
Selection [116.09532365093659]
本稿では,変圧器をベースとしたモデルのカスケード化手法であるカスケード変換器について紹介する。
現状の変圧器モデルと比較すると,提案手法は精度にほとんど影響を与えずに計算量を37%削減する。
論文 参考訳(メタデータ) (2020-05-05T23:32:01Z) - Transformer based Grapheme-to-Phoneme Conversion [0.9023847175654603]
本稿では,G2P変換へのトランスアーキテクチャの適用について検討する。
我々は、その性能を、繰り返しおよび畳み込みニューラルネットワークに基づくアプローチと比較する。
その結果, 変圧器をベースとしたG2Pは, 単語誤り率の点で, 畳み込みに基づくアプローチよりも優れていた。
論文 参考訳(メタデータ) (2020-04-14T07:48:15Z) - A Precisely Xtreme-Multi Channel Hybrid Approach For Roman Urdu
Sentiment Analysis [0.8812173669205371]
本稿では,Word2vec,FastText,Gloveという,最も広く使われているアプローチを用いて構築した3つのニューラルワード埋め込みについて述べる。
公開されているベンチマークデータセットが欠如していることを考えると、初となるRoman Urduデータセットを提供しており、正、負、中立のクラスに対して注釈付けされた3241の感情で構成されている。
最先端の機械とディープラーニングの手法を、F1スコアで9%、F1スコアで4%で上回る、極めて極端なマルチチャネルハイブリッド手法を提案する。
論文 参考訳(メタデータ) (2020-03-11T04:08:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。