論文の概要: Learning neural network potentials from experimental data via
Differentiable Trajectory Reweighting
- arxiv url: http://arxiv.org/abs/2106.01138v1
- Date: Wed, 2 Jun 2021 13:10:43 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-03 14:16:54.545854
- Title: Learning neural network potentials from experimental data via
Differentiable Trajectory Reweighting
- Title(参考訳): 微分軌道重み付けによる実験データからのニューラルネットワーク電位の学習
- Authors: Stephan Thaler and Julija Zavadlav
- Abstract要約: ニューラルネットワーク(NN)電位を直接実験データから学習するトップダウンアプローチは、あまり注目されていない。
本稿では,時間非依存オブザーバのMDシミュレーションにより,微分を回避できるDiffTRe法を提案する。
本研究では,ダイヤモンドの原子モデルと粒度の粗い水モデルに対するNN電位の学習におけるDiffTReの有効性を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In molecular dynamics (MD), neural network (NN) potentials trained bottom-up
on quantum mechanical data have seen tremendous success recently. Top-down
approaches that learn NN potentials directly from experimental data have
received less attention, typically facing numerical and computational
challenges when backpropagating through MD simulations. We present the
Differentiable Trajectory Reweighting (DiffTRe) method, which bypasses
differentiation through the MD simulation for time-independent observables.
Leveraging thermodynamic perturbation theory, we avoid exploding gradients and
achieve around 2 orders of magnitude speed-up in gradient computation for
top-down learning. We show effectiveness of DiffTRe in learning NN potentials
for an atomistic model of diamond and a coarse-grained model of water based on
diverse experimental observables including thermodynamic, structural and
mechanical properties. Importantly, DiffTRe also generalizes bottom-up
structural coarse-graining methods such as iterative Boltzmann inversion to
arbitrary potentials. The presented method constitutes an important milestone
towards enriching NN potentials with experimental data, particularly when
accurate bottom-up data is unavailable.
- Abstract(参考訳): 分子動力学(md)では、量子力学データでボトムアップを訓練したニューラルネットワーク(nn)ポテンシャルが近年大きな成功を収めている。
実験データから直接NN電位を学習するトップダウンアプローチは、一般的にMDシミュレーションをバックプロパゲートする際に数値や計算上の問題に直面している。
本稿では,mdシミュレーションによる時間非依存オブザーバブルの微分をバイパスする微分可能軌道再重み付け(difftre)法を提案する。
熱力学的摂動理論を応用し、爆発的な勾配を回避し、トップダウン学習のための勾配計算で約2桁の速度アップを達成する。
本研究では, 熱力学, 構造, 機械的特性を含む種々の実験的観測値に基づいて, ダイヤモンドの原子モデルと粗粒水モデルに対するNN電位の学習におけるDiffTReの有効性を示す。
重要なことに、DiffTReはボトムアップ構造粗粒化法、例えば反復ボルツマンの任意のポテンシャルへの逆変換を一般化する。
提案手法はnn電位を実験データで高めるための重要なマイルストーンであり、特に正確なボトムアップデータが利用できない場合である。
関連論文リスト
- Inferring stochastic low-rank recurrent neural networks from neural data [5.179844449042386]
計算神経科学における中心的な目的は、大きなニューロンの活動と基礎となる力学系を関連付けることである。
低ランクリカレントニューラルネットワーク(RNN)は、トラクタブルダイナミクスを持つことによって、そのような解釈可能性を示す。
そこで本研究では,低ランクRNNをモンテカルロ変分法に適合させる手法を提案する。
論文 参考訳(メタデータ) (2024-06-24T15:57:49Z) - Machine learning enabled experimental design and parameter estimation
for ultrafast spin dynamics [54.172707311728885]
機械学習とベイズ最適実験設計(BOED)を組み合わせた方法論を提案する。
本手法は,大規模スピンダイナミクスシミュレーションのためのニューラルネットワークモデルを用いて,BOEDの正確な分布と実用計算を行う。
数値ベンチマークでは,XPFS実験の誘導,モデルパラメータの予測,実験時間内でのより情報的な測定を行う上で,本手法の優れた性能を示す。
論文 参考訳(メタデータ) (2023-06-03T06:19:20Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Denoise Pretraining on Nonequilibrium Molecules for Accurate and
Transferable Neural Potentials [8.048439531116367]
より正確で伝達可能なGNNポテンシャル予測を実現するために,非平衡分子配座の事前学習を提案する。
小分子で事前学習したモデルでは、顕著な伝達性を示し、多様な分子系で微調整された場合の性能が向上した。
論文 参考訳(メタデータ) (2023-03-03T21:15:22Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
本稿では,疫病予測のための新しい物理インフォームドニューラルネットワークEINNを紹介する。
メカニスティックモデルによって提供される理論的柔軟性と、AIモデルによって提供されるデータ駆動表現性の両方を活用する方法について検討する。
論文 参考訳(メタデータ) (2022-02-21T18:59:03Z) - Influence Estimation and Maximization via Neural Mean-Field Dynamics [60.91291234832546]
本稿では,ニューラル平均場(NMF)ダイナミクスを用いた新しい学習フレームワークを提案する。
我々のフレームワークは拡散ネットワークの構造とノード感染確率の進化を同時に学習することができる。
論文 参考訳(メタデータ) (2021-06-03T00:02:05Z) - Learning the exchange-correlation functional from nature with fully
differentiable density functional theory [0.0]
我々は、完全に微分可能な3次元コーン・シャム密度汎関数論フレームワーク内での交換相関関数を置き換えるためにニューラルネットワークを訓練する。
我々の訓練された交換相関ネットワークは110分子の集合体における原子化とイオン化エネルギーの予測を改善した。
論文 参考訳(メタデータ) (2021-02-08T14:25:10Z) - SE(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate
Interatomic Potentials [0.17590081165362778]
NequIPは分子動力学シミュレーションのためのab-initio計算から原子間電位を学習するためのSE(3)等価ニューラルネットワークアプローチである。
この方法は、顕著なデータ効率を示しながら、様々な分子や材料の挑戦的な集合に対して最先端の精度を達成する。
論文 参考訳(メタデータ) (2021-01-08T18:49:10Z) - Phase Detection with Neural Networks: Interpreting the Black Box [58.720142291102135]
ニューラルネットワーク(NN)は通常、予測の背後にある推論に対する洞察を妨げます。
本研究では,1次元拡張スピンレスFermi-Hubbardモデルの位相を半充足で予測するために,NNのブラックボックスをいかに影響関数が解き放つかを示す。
論文 参考訳(メタデータ) (2020-04-09T17:45:45Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
スパイキングニューラルネットワーク(SNN)は、時間的スパイクパターンを用いて情報を表現し、伝達する。
本稿では,情報符号化,シナプス可塑性,意思決定におけるスパイクタイミングダイナミクスの寄与について検討し,将来のDeepSNNやニューロモルフィックハードウェアシステムの設計への新たな視点を提供する。
論文 参考訳(メタデータ) (2020-03-26T11:13:07Z) - Embedded-physics machine learning for coarse-graining and collective
variable discovery without data [3.222802562733787]
基礎となる物理を一貫して組み込む新しい学習フレームワークを提案する。
原子間力場の形で利用可能な物理学を完全に組み込んだ逆クルバック・リーブラー分岐に基づく新しい目的を提案する。
本研究は,バイモーダルポテンシャルエネルギー関数とアラニンジペプチドに対するCVの予測能力および物理的意義の観点からアルゴリズムの進歩を実証する。
論文 参考訳(メタデータ) (2020-02-24T10:28:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。