論文の概要: SMURF: SeMantic and linguistic UndeRstanding Fusion for Caption
Evaluation via Typicality Analysis
- arxiv url: http://arxiv.org/abs/2106.01444v1
- Date: Wed, 2 Jun 2021 19:58:20 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-04 12:22:34.963994
- Title: SMURF: SeMantic and linguistic UndeRstanding Fusion for Caption
Evaluation via Typicality Analysis
- Title(参考訳): SMURF:典型的分析によるカプセル評価のための意味的・言語的不定形核融合
- Authors: Joshua Feinglass and Yezhou Yang
- Abstract要約: 情報理論に根ざした評価の新しい定式化である「定型性」を導入する。
これらの分割された意味論と流布の次元が、キャプタの違いに関するシステムレベルの洞察をいかに与えているかを示す。
提案手法とそれらの組み合わせであるSMURFは,他のルールベース評価指標と比較した場合,人間の判断と最先端の相関が得られた。
- 参考スコア(独自算出の注目度): 20.026835809227283
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The open-ended nature of visual captioning makes it a challenging area for
evaluation. The majority of proposed models rely on specialized training to
improve human-correlation, resulting in limited adoption, generalizability, and
explainabilty. We introduce "typicality", a new formulation of evaluation
rooted in information theory, which is uniquely suited for problems lacking a
definite ground truth. Typicality serves as our framework to develop a novel
semantic comparison, SPARCS, as well as referenceless fluency evaluation
metrics. Over the course of our analysis, two separate dimensions of fluency
naturally emerge: style, captured by metric SPURTS, and grammar, captured in
the form of grammatical outlier penalties. Through extensive experiments and
ablation studies on benchmark datasets, we show how these decomposed dimensions
of semantics and fluency provide greater system-level insight into captioner
differences. Our proposed metrics along with their combination, SMURF, achieve
state-of-the-art correlation with human judgment when compared with other
rule-based evaluation metrics.
- Abstract(参考訳): 視覚キャプションのオープンエンドな性質は、評価の難しい領域となっている。
提案されたモデルの大部分は、人間関係を改善するための専門的なトレーニングに依存しているため、採用、一般化、説明性は限られている。
我々は,情報理論に根ざした評価の新しい定式化である「定型性(typicality)」を導入する。
典型性は、新しいセマンティック比較、SPARCS、および参照なし流速評価指標を開発するためのフレームワークとして役立ちます。
分析の過程で, 計量SPURTSで捉えたスタイルと, 文法的なアウトリー・ペナルティ(outlier penalties)の形で捉えた文法という, フラレンシの2つの次元が自然に現れる。
ベンチマークデータセットに関する広範な実験とアブレーション研究を通じて、これらの分割された意味論と流布の次元が、キャプタの違いに対するシステムレベルの洞察をいかに高めるかを示す。
提案手法とそれらの組み合わせであるSMURFは,他のルールベース評価指標と比較した場合,人間の判断と最先端の相関が得られた。
関連論文リスト
- What is lost in Normalization? Exploring Pitfalls in Multilingual ASR Model Evaluations [0.0]
本稿では,OpenAI Whisper,MetaのMMS,Seamless,アセンブリAIのConformerなど,主要なASRモデルのテキスト正規化ルーチンについて検討する。
我々の研究は、現在のテキスト正規化の実践が、公正な比較のためにASR出力を標準化することを目的としている一方で、Indicスクリプトに適用した場合、根本的な欠陥があることを明らかにする。
本稿では,言語学の専門知識を生かしたテキスト正規化ルーチン開発へのシフトを提案する。
論文 参考訳(メタデータ) (2024-09-04T05:08:23Z) - FENICE: Factuality Evaluation of summarization based on Natural language Inference and Claim Extraction [85.26780391682894]
自然言語推論とクレーム抽出(FENICE)に基づく要約のファクチュアリティ評価を提案する。
FENICEは、ソース文書内の情報と、要約から抽出されたクレームと呼ばれる一連の原子的事実との間のNLIベースのアライメントを利用する。
我々の測定基準は、事実性評価のためのデファクトベンチマークであるAGGREFACTに関する新しい技術状況を設定する。
論文 参考訳(メタデータ) (2024-03-04T17:57:18Z) - Cobra Effect in Reference-Free Image Captioning Metrics [58.438648377314436]
視覚言語事前学習モデル(VLM)を活用した参照フリー手法の普及が出現している。
本稿では,基準自由度に欠陥があるかどうかを考察する。
GPT-4Vは生成した文を評価するための評価ツールであり,提案手法がSOTA(State-of-the-art)の性能を達成することを示す。
論文 参考訳(メタデータ) (2024-02-18T12:36:23Z) - CONFIT: Toward Faithful Dialogue Summarization with
Linguistically-Informed Contrastive Fine-tuning [5.389540975316299]
生成された要約における現実的な矛盾は、抽象的な対話要約の実践的応用を著しく制限する。
本稿では,エラーのタイプを強調し,事実性に対する二項的理解から遠ざかるために,アノテーションデータを用いた事実的エラーのタイプ分析を行う。
本稿では,ConFiTと呼ばれる新しいコントラスト微調整手法により,要約の事実整合性と全体的な品質を改善するためのトレーニング戦略を提案する。
論文 参考訳(メタデータ) (2021-12-16T09:08:40Z) - Contextualized Semantic Distance between Highly Overlapped Texts [85.1541170468617]
テキスト編集や意味的類似性評価といった自然言語処理タスクにおいて、ペア化されたテキストに重複が頻繁に発生する。
本稿では,マスク・アンド・予測戦略を用いてこの問題に対処することを目的とする。
本稿では,最も長い単語列の単語を隣接する単語とみなし,その位置の分布を予測するためにマスク付き言語モデリング(MLM)を用いる。
セマンティックテキスト類似性の実験では、NDDは様々な意味的差異、特に高い重なり合うペアテキストに対してより敏感であることが示されている。
論文 参考訳(メタデータ) (2021-10-04T03:59:15Z) - Did the Cat Drink the Coffee? Challenging Transformers with Generalized
Event Knowledge [59.22170796793179]
Transformers Language Models (TLMs) を数学的適合のテクトダイナミックな評価のためのベンチマークで検証した。
以上の結果から, TLM は SDM に匹敵する性能が得られることが示された。
しかし、さらなる分析は、TLMがイベント知識の重要な側面を捉えていないことを一貫して示唆している。
論文 参考訳(メタデータ) (2021-07-22T20:52:26Z) - A comprehensive comparative evaluation and analysis of Distributional
Semantic Models [61.41800660636555]
我々は、静的DSMによって生成されたり、BERTによって生成された文脈化されたベクトルを平均化して得られるような、型分布ベクトルの包括的評価を行う。
その結果、予測ベースモデルの優越性は現実よりも明らかであり、ユビキタスではないことが明らかとなった。
我々は認知神経科学からRepresentational similarity Analysis(RSA)の方法論を借りて、分布モデルによって生成された意味空間を検査する。
論文 参考訳(メタデータ) (2021-05-20T15:18:06Z) - LCEval: Learned Composite Metric for Caption Evaluation [37.2313913156926]
ニューラルネットワークに基づく学習指標を提案し,キャプションレベルのキャプション評価を改善する。
本稿では,異なる言語特徴と学習指標のキャプションレベルの相関関係について検討する。
提案手法は,キャプションレベルの相関で既存の指標を上回るだけでなく,人間評価に対するシステムレベルの相関性も示している。
論文 参考訳(メタデータ) (2020-12-24T06:38:24Z) - Weakly-Supervised Aspect-Based Sentiment Analysis via Joint
Aspect-Sentiment Topic Embedding [71.2260967797055]
アスペクトベース感情分析のための弱教師付きアプローチを提案する。
We learn sentiment, aspects> joint topic embeddeds in the word embedding space。
次に、ニューラルネットワークを用いて単語レベルの識別情報を一般化する。
論文 参考訳(メタデータ) (2020-10-13T21:33:24Z) - Learning by Semantic Similarity Makes Abstractive Summarization Better [13.324006587838522]
近年のLM, BART, およびベンチマークデータセットCNN/DMの参照要約を比較した。
興味深いことに、モデル生成サマリーは参照サマリーと比較して高いスコアを受け取る。
論文 参考訳(メタデータ) (2020-02-18T17:59:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。