IoT Solutions with Multi-Sensor Fusion and Signal-Image Encoding for
Secure Data Transfer and Decision Making
- URL: http://arxiv.org/abs/2106.01497v1
- Date: Wed, 2 Jun 2021 22:48:06 GMT
- Title: IoT Solutions with Multi-Sensor Fusion and Signal-Image Encoding for
Secure Data Transfer and Decision Making
- Authors: Piyush K. Sharma, Mark Dennison, Adrienne Raglin
- Abstract summary: Military is investigating how heterogeneous IoT devices can aid processes and tasks.
We propose a signal to image encoding approach to transform information (signal) to integrate (fuse) data from IoT wearable devices to an image which is invertible and easier to visualize supporting decision making.
- Score: 0.8287206589886881
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deployment of Internet of Things (IoT) devices and Data Fusion techniques
have gained popularity in public and government domains. This usually requires
capturing and consolidating data from multiple sources. As datasets do not
necessarily originate from identical sensors, fused data typically results in a
complex data problem. Because military is investigating how heterogeneous IoT
devices can aid processes and tasks, we investigate a multi-sensor approach.
Moreover, we propose a signal to image encoding approach to transform
information (signal) to integrate (fuse) data from IoT wearable devices to an
image which is invertible and easier to visualize supporting decision making.
Furthermore, we investigate the challenge of enabling an intelligent
identification and detection operation and demonstrate the feasibility of the
proposed Deep Learning and Anomaly Detection models that can support future
application that utilizes hand gesture data from wearable devices.
Related papers
- Graph-Based Multi-Modal Sensor Fusion for Autonomous Driving [3.770103075126785]
We introduce a novel approach to multi-modal sensor fusion, focusing on developing a graph-based state representation.
We present a Sensor-Agnostic Graph-Aware Kalman Filter, the first online state estimation technique designed to fuse multi-modal graphs.
We validate the effectiveness of our proposed framework through extensive experiments conducted on both synthetic and real-world driving datasets.
arXiv Detail & Related papers (2024-11-06T06:58:17Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - Joint Sensing and Task-Oriented Communications with Image and Wireless
Data Modalities for Dynamic Spectrum Access [49.83882366499547]
This paper introduces a deep learning approach to dynamic spectrum access, leveraging the synergy of multi-modal image and spectrum data for the identification of potential transmitters.
We consider an edge device equipped with a camera that is taking images of potential objects such as vehicles that may harbor transmitters.
We propose a collaborative system wherein the edge device communicates selectively processed information to a trusted receiver acting as a fusion center.
arXiv Detail & Related papers (2023-12-21T15:26:26Z) - Prototype of deployment of Federated Learning with IoT devices [0.0]
A huge amount of the resource desired, data, is stored in mobile devices, sensors and other Internet of Things (IoT) devices.
At the same time these devices do not have enough data or computational capacity to train good models.
Federated Learning (FL) provides an innovative solution that allows devices to learn in a collaborative way.
arXiv Detail & Related papers (2023-11-24T10:37:30Z) - Ensemble Learning based Anomaly Detection for IoT Cybersecurity via
Bayesian Hyperparameters Sensitivity Analysis [2.3226893628361682]
Internet of Things (IoT) integrates more than billions of intelligent devices over the globe with the capability of communicating with other connected devices.
Data collected by IoT contain a tremendous amount of information for anomaly detection.
In this paper, we present a study on using ensemble machine learning methods for enhancing IoT cybersecurity via anomaly detection.
arXiv Detail & Related papers (2023-07-20T05:23:49Z) - An Automated Data Engineering Pipeline for Anomaly Detection of IoT
Sensor Data [0.0]
System of Chip technology, Internet of Things (IoT), cloud computing, and artificial intelligence has brought more possibilities of improving and solving the current problems.
Data analytics and the use of machine learning/deep learning makes it possible to learn the underlying patterns and make decisions based on what was learned from massive data generated from IoT sensors.
Process involves the use of IoT sensors, Raspberry Pis, Amazon Web Services (AWS) and multiple machine learning techniques with the intent to identify anomalous cases for the smart home security system.
arXiv Detail & Related papers (2021-09-28T15:57:29Z) - Heterogeneous Noisy Short Signal Camouflage in Multi-Domain Environment
Decision-Making [0.0]
We propose an approach to hide information (sensor signal) by transforming it to an image or an audio signal.
In one of the latest attempts to the military modernization, we investigate the challenges of enabling an intelligent identification and detection operation.
arXiv Detail & Related papers (2021-06-02T22:59:58Z) - Federated Learning: A Signal Processing Perspective [144.63726413692876]
Federated learning is an emerging machine learning paradigm for training models across multiple edge devices holding local datasets, without explicitly exchanging the data.
This article provides a unified systematic framework for federated learning in a manner that encapsulates and highlights the main challenges that are natural to treat using signal processing tools.
arXiv Detail & Related papers (2021-03-31T15:14:39Z) - Semantics-aware Adaptive Knowledge Distillation for Sensor-to-Vision
Action Recognition [131.6328804788164]
We propose a framework, named Semantics-aware Adaptive Knowledge Distillation Networks (SAKDN), to enhance action recognition in vision-sensor modality (videos)
The SAKDN uses multiple wearable-sensors as teacher modalities and uses RGB videos as student modality.
arXiv Detail & Related papers (2020-09-01T03:38:31Z) - Contextual-Bandit Anomaly Detection for IoT Data in Distributed
Hierarchical Edge Computing [65.78881372074983]
IoT devices can hardly afford complex deep neural networks (DNN) models, and offloading anomaly detection tasks to the cloud incurs long delay.
We propose and build a demo for an adaptive anomaly detection approach for distributed hierarchical edge computing (HEC) systems.
We show that our proposed approach significantly reduces detection delay without sacrificing accuracy, as compared to offloading detection tasks to the cloud.
arXiv Detail & Related papers (2020-04-15T06:13:33Z) - Adaptive Anomaly Detection for IoT Data in Hierarchical Edge Computing [71.86955275376604]
We propose an adaptive anomaly detection approach for hierarchical edge computing (HEC) systems to solve this problem.
We design an adaptive scheme to select one of the models based on the contextual information extracted from input data, to perform anomaly detection.
We evaluate our proposed approach using a real IoT dataset, and demonstrate that it reduces detection delay by 84% while maintaining almost the same accuracy as compared to offloading detection tasks to the cloud.
arXiv Detail & Related papers (2020-01-10T05:29:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.