Personalizing Pre-trained Models
- URL: http://arxiv.org/abs/2106.01499v1
- Date: Wed, 2 Jun 2021 22:58:47 GMT
- Title: Personalizing Pre-trained Models
- Authors: Mina Khan, P Srivatsa, Advait Rane, Shriram Chenniappa, Asadali
Hazariwala, and Pattie Maes
- Abstract summary: We consider how upstream pretrained models can be leveraged for downstream few-shot, multilabel, and continual learning tasks.
Our model CLIPPER (CLIP PERsonalized) uses image representations from CLIP, a large-scale image representation learning model trained using weak natural language supervision.
- Score: 23.145974171912414
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Self-supervised or weakly supervised models trained on large-scale datasets
have shown sample-efficient transfer to diverse datasets in few-shot settings.
We consider how upstream pretrained models can be leveraged for downstream
few-shot, multilabel, and continual learning tasks. Our model CLIPPER (CLIP
PERsonalized) uses image representations from CLIP, a large-scale image
representation learning model trained using weak natural language supervision.
We developed a technique, called Multi-label Weight Imprinting (MWI), for
multi-label, continual, and few-shot learning, and CLIPPER uses MWI with image
representations from CLIP. We evaluated CLIPPER on 10 single-label and 5
multi-label datasets. Our model shows robust and competitive performance, and
we set new benchmarks for few-shot, multi-label, and continual learning. Our
lightweight technique is also compute-efficient and enables privacy-preserving
applications as the data is not sent to the upstream model for fine-tuning.
Related papers
- CLIPErase: Efficient Unlearning of Visual-Textual Associations in CLIP [56.199779065855004]
We introduce CLIPErase, a novel approach that disentangles and selectively forgets both visual and textual associations.
Experiments on the CIFAR-100 and Flickr30K datasets demonstrate that CLIPErase effectively forgets designated associations in zero-shot tasks for multimodal samples.
arXiv Detail & Related papers (2024-10-30T17:51:31Z) - Investigating Self-Supervised Methods for Label-Efficient Learning [27.029542823306866]
We study different self supervised pretext tasks, namely contrastive learning, clustering, and masked image modelling for their low-shot capabilities.
We introduce a framework involving both mask image modelling and clustering as pretext tasks, which performs better across all low-shot downstream tasks.
When testing the model on full scale datasets, we show performance gains in multi-class classification, multi-label classification and semantic segmentation.
arXiv Detail & Related papers (2024-06-25T10:56:03Z) - Pre-Trained Vision-Language Models as Partial Annotators [40.89255396643592]
Pre-trained vision-language models learn massive data to model unified representations of images and natural languages.
In this paper, we investigate a novel "pre-trained annotating - weakly-supervised learning" paradigm for pre-trained model application and experiment on image classification tasks.
arXiv Detail & Related papers (2024-05-23T17:17:27Z) - Intra-task Mutual Attention based Vision Transformer for Few-Shot Learning [12.5354658533836]
Humans possess remarkable ability to accurately classify new, unseen images after being exposed to only a few examples.
For artificial neural network models, determining the most relevant features for distinguishing between two images with limited samples presents a challenge.
We propose an intra-task mutual attention method for few-shot learning, that involves splitting the support and query samples into patches.
arXiv Detail & Related papers (2024-05-06T02:02:57Z) - Multimodal CLIP Inference for Meta-Few-Shot Image Classification [0.0]
Multimodal foundation models like CLIP learn a joint (image, text) embedding.
This study demonstrates that combining modalities from CLIP's text and image encoders outperforms state-of-the-art meta-few-shot learners on widely adopted benchmarks.
arXiv Detail & Related papers (2024-03-26T17:47:54Z) - MM1: Methods, Analysis & Insights from Multimodal LLM Pre-training [103.72844619581811]
We build performant Multimodal Large Language Models (MLLMs)
In particular, we study the importance of various architecture components and data choices.
We demonstrate that for large-scale multimodal pre-training using a careful mix of image-caption, interleaved image-text, and text-only data.
arXiv Detail & Related papers (2024-03-14T17:51:32Z) - Self-Supervised Open-Ended Classification with Small Visual Language
Models [60.23212389067007]
We present Self-Context Adaptation (SeCAt), a self-supervised approach that unlocks few-shot abilities for open-ended classification with small visual language models.
By using models with approximately 1B parameters we outperform the few-shot abilities of much larger models, such as Frozen and FROMAGe.
arXiv Detail & Related papers (2023-09-30T21:41:21Z) - DINOv2: Learning Robust Visual Features without Supervision [75.42921276202522]
This work shows that existing pretraining methods, especially self-supervised methods, can produce such features if trained on enough curated data from diverse sources.
Most of the technical contributions aim at accelerating and stabilizing the training at scale.
In terms of data, we propose an automatic pipeline to build a dedicated, diverse, and curated image dataset instead of uncurated data, as typically done in the self-supervised literature.
arXiv Detail & Related papers (2023-04-14T15:12:19Z) - Masked Unsupervised Self-training for Zero-shot Image Classification [98.23094305347709]
Masked Unsupervised Self-Training (MUST) is a new approach which leverages two different and complimentary sources of supervision: pseudo-labels and raw images.
MUST improves upon CLIP by a large margin and narrows the performance gap between unsupervised and supervised classification.
arXiv Detail & Related papers (2022-06-07T02:03:06Z) - Multi-Task Self-Training for Learning General Representations [97.01728635294879]
Multi-task self-training (MuST) harnesses the knowledge in independent specialized teacher models to train a single general student model.
MuST is scalable with unlabeled or partially labeled datasets and outperforms both specialized supervised models and self-supervised models when training on large scale datasets.
arXiv Detail & Related papers (2021-08-25T17:20:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.