Pre-Trained Vision-Language Models as Partial Annotators
- URL: http://arxiv.org/abs/2406.18550v1
- Date: Thu, 23 May 2024 17:17:27 GMT
- Title: Pre-Trained Vision-Language Models as Partial Annotators
- Authors: Qian-Wei Wang, Yuqiu Xie, Letian Zhang, Zimo Liu, Shu-Tao Xia,
- Abstract summary: Pre-trained vision-language models learn massive data to model unified representations of images and natural languages.
In this paper, we investigate a novel "pre-trained annotating - weakly-supervised learning" paradigm for pre-trained model application and experiment on image classification tasks.
- Score: 40.89255396643592
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Pre-trained vision-language models learn massive data to model unified representations of images and natural languages, which can be widely applied to downstream machine learning tasks. In addition to zero-shot inference, in order to better adapt pre-trained models to the requirements of downstream tasks, people usually use methods such as few-shot or parameter-efficient fine-tuning and knowledge distillation. However, annotating samples is laborious, while a large number of unlabeled samples can be easily obtained. In this paper, we investigate a novel "pre-trained annotating - weakly-supervised learning" paradigm for pre-trained model application and experiment on image classification tasks. Specifically, based on CLIP, we annotate image samples with multiple prompt templates to obtain multiple candidate labels to form the noisy partial label dataset, and design a collaborative consistency regularization algorithm to solve this problem. Our method simultaneously trains two neural networks, which collaboratively purify training labels for each other and obtain pseudo-labels for self-training, while adopting prototypical similarity alignment and noisy supervised contrastive learning to optimize model representation. In experiments, our method achieves performances far beyond zero-shot inference without introducing additional label information, and outperforms other weakly supervised learning and few-shot fine-tuning methods, and obtains smaller deployed models. Our code is available at: \url{https://anonymous.4open.science/r/Co-Reg-8CF9}.
Related papers
- Integrated Image-Text Based on Semi-supervised Learning for Small Sample Instance Segmentation [1.3157419797035321]
The article proposes a novel small sample instance segmentation solution from the perspective of maximizing the utilization of existing information.
First, it helps the model fully utilize unlabeled data by learning to generate pseudo labels, increasing the number of available samples.
Second, by integrating the features of text and image, more accurate classification results can be obtained.
arXiv Detail & Related papers (2024-10-21T14:44:08Z) - Hybrid diffusion models: combining supervised and generative pretraining for label-efficient fine-tuning of segmentation models [55.2480439325792]
We propose a new pretext task, which is to perform simultaneously image denoising and mask prediction on the first domain.
We show that fine-tuning a model pretrained using this approach leads to better results than fine-tuning a similar model trained using either supervised or unsupervised pretraining.
arXiv Detail & Related papers (2024-08-06T20:19:06Z) - Asymmetric Co-teaching with Multi-view Consensus for Noisy Label
Learning [15.690502285538411]
We introduce our noisy-label learning approach, called Asymmetric Co-teaching (AsyCo)
AsyCo produces more consistent divergent results of the co-teaching models.
Experiments on synthetic and real-world noisy-label datasets show that AsyCo improves over current SOTA methods.
arXiv Detail & Related papers (2023-01-01T04:10:03Z) - Partner-Assisted Learning for Few-Shot Image Classification [54.66864961784989]
Few-shot Learning has been studied to mimic human visual capabilities and learn effective models without the need of exhaustive human annotation.
In this paper, we focus on the design of training strategy to obtain an elemental representation such that the prototype of each novel class can be estimated from a few labeled samples.
We propose a two-stage training scheme, which first trains a partner encoder to model pair-wise similarities and extract features serving as soft-anchors, and then trains a main encoder by aligning its outputs with soft-anchors while attempting to maximize classification performance.
arXiv Detail & Related papers (2021-09-15T22:46:19Z) - Semi-Supervised Few-Shot Classification with Deep Invertible Hybrid
Models [4.189643331553922]
We propose a deep invertible hybrid model which integrates discriminative and generative learning at a latent space level for semi-supervised few-shot classification.
Our main originality lies in our integration of these components at a latent space level, which is effective in preventing overfitting.
arXiv Detail & Related papers (2021-05-22T05:55:16Z) - Deep Ensembles for Low-Data Transfer Learning [21.578470914935938]
We study different ways of creating ensembles from pre-trained models.
We show that the nature of pre-training itself is a performant source of diversity.
We propose a practical algorithm that efficiently identifies a subset of pre-trained models for any downstream dataset.
arXiv Detail & Related papers (2020-10-14T07:59:00Z) - One-bit Supervision for Image Classification [121.87598671087494]
One-bit supervision is a novel setting of learning from incomplete annotations.
We propose a multi-stage training paradigm which incorporates negative label suppression into an off-the-shelf semi-supervised learning algorithm.
arXiv Detail & Related papers (2020-09-14T03:06:23Z) - CSI: Novelty Detection via Contrastive Learning on Distributionally
Shifted Instances [77.28192419848901]
We propose a simple, yet effective method named contrasting shifted instances (CSI)
In addition to contrasting a given sample with other instances as in conventional contrastive learning methods, our training scheme contrasts the sample with distributionally-shifted augmentations of itself.
Our experiments demonstrate the superiority of our method under various novelty detection scenarios.
arXiv Detail & Related papers (2020-07-16T08:32:56Z) - Learning Diverse Representations for Fast Adaptation to Distribution
Shift [78.83747601814669]
We present a method for learning multiple models, incorporating an objective that pressures each to learn a distinct way to solve the task.
We demonstrate our framework's ability to facilitate rapid adaptation to distribution shift.
arXiv Detail & Related papers (2020-06-12T12:23:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.