Learning Representation over Dynamic Graph using Aggregation-Diffusion
Mechanism
- URL: http://arxiv.org/abs/2106.01678v1
- Date: Thu, 3 Jun 2021 08:25:42 GMT
- Title: Learning Representation over Dynamic Graph using Aggregation-Diffusion
Mechanism
- Authors: Mingyi Liu and Zhiying Tu and Xiaofei Xu and Zhongjie Wang
- Abstract summary: We propose an aggregation-diffusion (AD) mechanism that actively propagates information to its neighbor by diffusion after the node updates its embedding through the aggregation mechanism.
In experiments on two real-world datasets in the dynamic link prediction task, the AD mechanism outperforms the baseline models that only use aggregation to propagate information.
- Score: 4.729833950299859
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Representation learning on graphs that evolve has recently received
significant attention due to its wide application scenarios, such as
bioinformatics, knowledge graphs, and social networks. The propagation of
information in graphs is important in learning dynamic graph representations,
and most of the existing methods achieve this by aggregation. However, relying
only on aggregation to propagate information in dynamic graphs can result in
delays in information propagation and thus affect the performance of the
method. To alleviate this problem, we propose an aggregation-diffusion (AD)
mechanism that actively propagates information to its neighbor by diffusion
after the node updates its embedding through the aggregation mechanism. In
experiments on two real-world datasets in the dynamic link prediction task, the
AD mechanism outperforms the baseline models that only use aggregation to
propagate information. We further conduct extensive experiments to discuss the
influence of different factors in the AD mechanism.
Related papers
- Information propagation dynamics in Deep Graph Networks [1.8130068086063336]
Deep Graph Networks (DGNs) have emerged as a family of deep learning models that can process and learn structured information.
This thesis investigates the dynamics of information propagation within DGNs for static and dynamic graphs, focusing on their design as dynamical systems.
arXiv Detail & Related papers (2024-10-14T12:55:51Z) - Informative Subgraphs Aware Masked Auto-Encoder in Dynamic Graphs [1.3571543090749625]
We introduce a constrained probabilistic generative model to generate informative subgraphs that guide the evolution of dynamic graphs.
The informative subgraph identified by DyGIS will serve as the input of dynamic graph masked autoencoder (DGMAE)
arXiv Detail & Related papers (2024-09-14T02:16:00Z) - Revealing Decurve Flows for Generalized Graph Propagation [108.80758541147418]
This study addresses the limitations of the traditional analysis of message-passing, central to graph learning, by defining em textbfgeneralized propagation with directed and weighted graphs.
We include a preliminary exploration of learned propagation patterns in datasets, a first in the field.
arXiv Detail & Related papers (2024-02-13T14:13:17Z) - TimeGraphs: Graph-based Temporal Reasoning [64.18083371645956]
TimeGraphs is a novel approach that characterizes dynamic interactions as a hierarchical temporal graph.
Our approach models the interactions using a compact graph-based representation, enabling adaptive reasoning across diverse time scales.
We evaluate TimeGraphs on multiple datasets with complex, dynamic agent interactions, including a football simulator, the Resistance game, and the MOMA human activity dataset.
arXiv Detail & Related papers (2024-01-06T06:26:49Z) - GDBN: a Graph Neural Network Approach to Dynamic Bayesian Network [7.876789380671075]
We propose a graph neural network approach with score-based method aiming at learning a sparse DAG.
We demonstrate methods with graph neural network significantly outperformed other state-of-the-art methods with dynamic bayesian networking inference.
arXiv Detail & Related papers (2023-01-28T02:49:13Z) - Directed Acyclic Graph Structure Learning from Dynamic Graphs [44.21230819336437]
Estimating the structure of directed acyclic graphs (DAGs) of features (variables) plays a vital role in revealing the latent data generation process.
We study the learning problem of node feature generation mechanism on such ubiquitous dynamic graph data.
arXiv Detail & Related papers (2022-11-30T14:22:01Z) - Graph Neural Networks for Multi-Robot Active Information Acquisition [15.900385823366117]
A team of mobile robots, communicating through an underlying graph, estimates a hidden state expressing a phenomenon of interest.
Existing approaches are either not scalable, unable to handle dynamic phenomena or not robust to changes in the communication graph.
We propose an Information-aware Graph Block Network (I-GBNet) that aggregates information over the graph representation and provides sequential-decision making in a distributed manner.
arXiv Detail & Related papers (2022-09-24T21:45:06Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
We introduce an active intervention-targeting mechanism which enables a quick identification of the underlying causal structure of the data-generating process.
Our method significantly reduces the required number of interactions compared with random intervention targeting.
We demonstrate superior performance on multiple benchmarks from simulated to real-world data.
arXiv Detail & Related papers (2021-09-06T13:10:37Z) - TCL: Transformer-based Dynamic Graph Modelling via Contrastive Learning [87.38675639186405]
We propose a novel graph neural network approach, called TCL, which deals with the dynamically-evolving graph in a continuous-time fashion.
To the best of our knowledge, this is the first attempt to apply contrastive learning to representation learning on dynamic graphs.
arXiv Detail & Related papers (2021-05-17T15:33:25Z) - Learning the Implicit Semantic Representation on Graph-Structured Data [57.670106959061634]
Existing representation learning methods in graph convolutional networks are mainly designed by describing the neighborhood of each node as a perceptual whole.
We propose a Semantic Graph Convolutional Networks (SGCN) that explores the implicit semantics by learning latent semantic-paths in graphs.
arXiv Detail & Related papers (2021-01-16T16:18:43Z) - GCN for HIN via Implicit Utilization of Attention and Meta-paths [104.24467864133942]
Heterogeneous information network (HIN) embedding aims to map the structure and semantic information in a HIN to distributed representations.
We propose a novel neural network method via implicitly utilizing attention and meta-paths.
We first use the multi-layer graph convolutional network (GCN) framework, which performs a discriminative aggregation at each layer.
We then give an effective relaxation and improvement via introducing a new propagation operation which can be separated from aggregation.
arXiv Detail & Related papers (2020-07-06T11:09:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.