GDBN: a Graph Neural Network Approach to Dynamic Bayesian Network
- URL: http://arxiv.org/abs/2302.10804v1
- Date: Sat, 28 Jan 2023 02:49:13 GMT
- Title: GDBN: a Graph Neural Network Approach to Dynamic Bayesian Network
- Authors: Yang Sun and Yifan Xie
- Abstract summary: We propose a graph neural network approach with score-based method aiming at learning a sparse DAG.
We demonstrate methods with graph neural network significantly outperformed other state-of-the-art methods with dynamic bayesian networking inference.
- Score: 7.876789380671075
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Identifying causal relations among multi-variate time series is one of the
most important elements towards understanding the complex mechanisms underlying
the dynamic system. It provides critical tools for forecasting, simulations and
interventions in science and business analytics. In this paper, we proposed a
graph neural network approach with score-based method aiming at learning a
sparse DAG that captures the causal dependencies in a discretized time temporal
graph. We demonstrate methods with graph neural network significantly
outperformed other state-of-the-art methods with dynamic bayesian networking
inference. In addition, from the experiments, the structural causal model can
be more accurate than a linear SCM discovered by the methods such as Notears.
Related papers
- Interpreting Temporal Graph Neural Networks with Koopman Theory [9.088336125738385]
We introduce an explainability approach for temporal graphs.
We present two methods to interpret the STGNN's decision process.
We show how our methods can correctly identify interpretable features such as infection times and infected nodes in the context of dissemination processes.
arXiv Detail & Related papers (2024-10-17T11:56:33Z) - Online Multi-modal Root Cause Analysis [61.94987309148539]
Root Cause Analysis (RCA) is essential for pinpointing the root causes of failures in microservice systems.
Existing online RCA methods handle only single-modal data overlooking, complex interactions in multi-modal systems.
We introduce OCEAN, a novel online multi-modal causal structure learning method for root cause localization.
arXiv Detail & Related papers (2024-10-13T21:47:36Z) - Graph Attention Inference of Network Topology in Multi-Agent Systems [0.0]
Our work introduces a novel machine learning-based solution that leverages the attention mechanism to predict future states of multi-agent systems.
The graph structure is then inferred from the strength of the attention values.
Our results demonstrate that the presented data-driven graph attention machine learning model can identify the network topology in multi-agent systems.
arXiv Detail & Related papers (2024-08-27T23:58:51Z) - Dynamic Causal Explanation Based Diffusion-Variational Graph Neural
Network for Spatio-temporal Forecasting [60.03169701753824]
We propose a novel Dynamic Diffusion-al Graph Neural Network (DVGNN) fortemporal forecasting.
The proposed DVGNN model outperforms state-of-the-art approaches and achieves outstanding Root Mean Squared Error result.
arXiv Detail & Related papers (2023-05-16T11:38:19Z) - Dynamic Graph Representation Learning via Edge Temporal States Modeling and Structure-reinforced Transformer [5.093187534912688]
We introduce the Recurrent Structure-reinforced Graph Transformer (RSGT), a novel framework for dynamic graph representation learning.
RSGT captures temporal node representations encoding both graph topology and evolving dynamics through a recurrent learning paradigm.
We show RSGT's superior performance in discrete dynamic graph representation learning, consistently outperforming existing methods in dynamic link prediction tasks.
arXiv Detail & Related papers (2023-04-20T04:12:50Z) - Graph-Time Convolutional Neural Networks: Architecture and Theoretical
Analysis [12.995632804090198]
We introduce Graph-Time Convolutional Neural Networks (GTCNNs) as principled architecture to aid learning.
The approach can work with any type of product graph and we also introduce a parametric graph to learn also the producttemporal coupling.
Extensive numerical results on benchmark corroborate our findings and show the GTCNN compares favorably with state-of-the-art solutions.
arXiv Detail & Related papers (2022-06-30T10:20:52Z) - Learning the Evolutionary and Multi-scale Graph Structure for
Multivariate Time Series Forecasting [50.901984244738806]
We show how to model the evolutionary and multi-scale interactions of time series.
In particular, we first provide a hierarchical graph structure cooperated with the dilated convolution to capture the scale-specific correlations.
A unified neural network is provided to integrate the components above to get the final prediction.
arXiv Detail & Related papers (2022-06-28T08:11:12Z) - Bayesian Inference of Stochastic Dynamical Networks [0.0]
This paper presents a novel method for learning network topology and internal dynamics.
It is compared with group sparse Bayesian learning (GSBL), BINGO, kernel-based methods, dynGENIE3, GENIE3 and ARNI.
Our method achieves state-of-the-art performance compared with group sparse Bayesian learning (GSBL), BINGO, kernel-based methods, dynGENIE3, GENIE3 and ARNI.
arXiv Detail & Related papers (2022-06-02T03:22:34Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
We introduce an active intervention-targeting mechanism which enables a quick identification of the underlying causal structure of the data-generating process.
Our method significantly reduces the required number of interactions compared with random intervention targeting.
We demonstrate superior performance on multiple benchmarks from simulated to real-world data.
arXiv Detail & Related papers (2021-09-06T13:10:37Z) - Towards Deeper Graph Neural Networks [63.46470695525957]
Graph convolutions perform neighborhood aggregation and represent one of the most important graph operations.
Several recent studies attribute this performance deterioration to the over-smoothing issue.
We propose Deep Adaptive Graph Neural Network (DAGNN) to adaptively incorporate information from large receptive fields.
arXiv Detail & Related papers (2020-07-18T01:11:14Z) - Learned Factor Graphs for Inference from Stationary Time Sequences [107.63351413549992]
We propose a framework that combines model-based algorithms and data-driven ML tools for stationary time sequences.
neural networks are developed to separately learn specific components of a factor graph describing the distribution of the time sequence.
We present an inference algorithm based on learned stationary factor graphs, which learns to implement the sum-product scheme from labeled data.
arXiv Detail & Related papers (2020-06-05T07:06:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.