Near Optimal Stochastic Algorithms for Finite-Sum Unbalanced
Convex-Concave Minimax Optimization
- URL: http://arxiv.org/abs/2106.01761v1
- Date: Thu, 3 Jun 2021 11:30:32 GMT
- Title: Near Optimal Stochastic Algorithms for Finite-Sum Unbalanced
Convex-Concave Minimax Optimization
- Authors: Luo Luo, Guangzeng Xie, Tong Zhang, Zhihua Zhang
- Abstract summary: This paper considers first-order algorithms for convex-con minimax problems of the form $min_bf xmax_yf(bfbf y) simultaneously.
Our methods can be used to solve more general unbalanced minimax problems and are also near optimal.
- Score: 41.432757205864796
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: This paper considers stochastic first-order algorithms for convex-concave
minimax problems of the form $\min_{\bf x}\max_{\bf y}f(\bf x, \bf y)$, where
$f$ can be presented by the average of $n$ individual components which are
$L$-average smooth. For $\mu_x$-strongly-convex-$\mu_y$-strongly-concave
setting, we propose a new method which could find a $\varepsilon$-saddle point
of the problem in $\tilde{\mathcal O}
\big(\sqrt{n(\sqrt{n}+\kappa_x)(\sqrt{n}+\kappa_y)}\log(1/\varepsilon)\big)$
stochastic first-order complexity, where $\kappa_x\triangleq L/\mu_x$ and
$\kappa_y\triangleq L/\mu_y$. This upper bound is near optimal with respect to
$\varepsilon$, $n$, $\kappa_x$ and $\kappa_y$ simultaneously. In addition, the
algorithm is easily implemented and works well in practical. Our methods can be
extended to solve more general unbalanced convex-concave minimax problems and
the corresponding upper complexity bounds are also near optimal.
Related papers
- Faster Stochastic Algorithms for Minimax Optimization under
Polyak--{\L}ojasiewicz Conditions [12.459354707528819]
We propose SPIDER-GDA for solving the finite-sum problem of the form $min_x max_y f(x,y)triqangle frac1n sum_i=1n f_i(x,y)$.
We prove SPIDER-GDA could find an $epsilon$-optimal solution within $mathcal Oleft((n + sqrtn,kappa_xkappa_y2)log (1/epsilon)
arXiv Detail & Related papers (2023-07-29T02:26:31Z) - An Optimal Algorithm for Strongly Convex Min-min Optimization [79.11017157526815]
Existing optimal first-order methods require $mathcalO(sqrtmaxkappa_x,kappa_y log 1/epsilon)$ of computations of both $nabla_x f(x,y)$ and $nabla_y f(x,y)$.
We propose a new algorithm that only requires $mathcalO(sqrtkappa_x log 1/epsilon)$ of computations of $nabla_x f(x,
arXiv Detail & Related papers (2022-12-29T19:26:12Z) - The First Optimal Algorithm for Smooth and
Strongly-Convex-Strongly-Concave Minimax Optimization [88.91190483500932]
In this paper, we revisit the smooth and strongly-strongly-concave minimax optimization problem.
Existing state-of-the-art methods do not match lower bound $Omegaleft(sqrtkappa_xkappa_ylog3 (kappa_xkappa_y)logfrac1epsilonright)$.
We fix this fundamental issue by providing the first algorithm with $mathcalOleft( sqrtkappa_xkappa_ylog
arXiv Detail & Related papers (2022-05-11T17:33:07Z) - Decentralized Stochastic Variance Reduced Extragradient Method [25.21457349137344]
This paper studies decentralized convex-concave minimax optimization problems of the form $min_xmax_y fx,y triqfrac1msumi=1m f_i triqfrac1msumi=1m f_i triqfrac1msumi=1m f_i triqfrac1msumi=1m f_i triqfrac1msum
arXiv Detail & Related papers (2022-02-01T16:06:20Z) - Lifted Primal-Dual Method for Bilinearly Coupled Smooth Minimax
Optimization [47.27237492375659]
We study the bilinearly coupled minimax problem: $min_x max_y f(x) + ytop A x - h(y)$, where $f$ and $h$ are both strongly convex smooth functions.
No known first-order algorithms have hitherto achieved the lower complexity bound of $Omega(sqrtfracL_xmu_x + frac|A|sqrtmu_x,mu_y) log(frac1vareps
arXiv Detail & Related papers (2022-01-19T05:56:19Z) - Optimal Regret Algorithm for Pseudo-1d Bandit Convex Optimization [51.23789922123412]
We study online learning with bandit feedback (i.e. learner has access to only zeroth-order oracle) where cost/reward functions admit a "pseudo-1d" structure.
We show a lower bound of $min(sqrtdT, T3/4)$ for the regret of any algorithm, where $T$ is the number of rounds.
We propose a new algorithm sbcalg that combines randomized online gradient descent with a kernelized exponential weights method to exploit the pseudo-1d structure effectively.
arXiv Detail & Related papers (2021-02-15T08:16:51Z) - Streaming Complexity of SVMs [110.63976030971106]
We study the space complexity of solving the bias-regularized SVM problem in the streaming model.
We show that for both problems, for dimensions of $frac1lambdaepsilon$, one can obtain streaming algorithms with spacely smaller than $frac1lambdaepsilon$.
arXiv Detail & Related papers (2020-07-07T17:10:00Z) - Near-Optimal Algorithms for Minimax Optimization [115.21519161773287]
The paper presents the first with $tildeO(sqrtkappa_mathbf xkappa_mathbf)$, matching the design on logarithmic factors.
The paper also presents algorithms that match or outperform all existing methods in these settings in terms of complexity.
arXiv Detail & Related papers (2020-02-05T16:49:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.