Decentralized Stochastic Variance Reduced Extragradient Method
- URL: http://arxiv.org/abs/2202.00509v1
- Date: Tue, 1 Feb 2022 16:06:20 GMT
- Title: Decentralized Stochastic Variance Reduced Extragradient Method
- Authors: Luo Luo, Haishan Ye
- Abstract summary: This paper studies decentralized convex-concave minimax optimization problems of the form $min_xmax_y fx,y triqfrac1msumi=1m f_i triqfrac1msumi=1m f_i triqfrac1msumi=1m f_i triqfrac1msumi=1m f_i triqfrac1msum
- Score: 25.21457349137344
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper studies decentralized convex-concave minimax optimization problems
of the form $\min_x\max_y f(x,y) \triangleq\frac{1}{m}\sum_{i=1}^m f_i(x,y)$,
where $m$ is the number of agents and each local function can be written as
$f_i(x,y)=\frac{1}{n}\sum_{j=1}^n f_{i,j}(x,y)$. We propose a novel
decentralized optimization algorithm, called multi-consensus stochastic
variance reduced extragradient, which achieves the best known stochastic
first-order oracle (SFO) complexity for this problem. Specifically, each agent
requires $\mathcal O((n+\kappa\sqrt{n})\log(1/\varepsilon))$ SFO calls for
strongly-convex-strongly-concave problem and $\mathcal
O((n+\sqrt{n}L/\varepsilon)\log(1/\varepsilon))$ SFO call for general
convex-concave problem to achieve $\varepsilon$-accurate solution in
expectation, where $\kappa$ is the condition number and $L$ is the smoothness
parameter. The numerical experiments show the proposed method performs better
than baselines.
Related papers
- Efficient Continual Finite-Sum Minimization [52.5238287567572]
We propose a key twist into the finite-sum minimization, dubbed as continual finite-sum minimization.
Our approach significantly improves upon the $mathcalO(n/epsilon)$ FOs that $mathrmStochasticGradientDescent$ requires.
We also prove that there is no natural first-order method with $mathcalOleft(n/epsilonalpharight)$ complexity gradient for $alpha 1/4$, establishing that the first-order complexity of our method is nearly tight.
arXiv Detail & Related papers (2024-06-07T08:26:31Z) - Near-Optimal Distributed Minimax Optimization under the Second-Order Similarity [22.615156512223763]
We propose variance- optimistic sliding (SVOGS) method, which takes the advantage of the finite-sum structure in the objective.
We prove $mathcal O(delta D2/varepsilon)$, communication complexity of $mathcal O(n+sqrtndelta D2/varepsilon)$, and local calls of $tildemathcal O(n+sqrtndelta+L)D2/varepsilon)$.
arXiv Detail & Related papers (2024-05-25T08:34:49Z) - Nearly Optimal Regret for Decentralized Online Convex Optimization [53.433398074919]
Decentralized online convex optimization (D-OCO) aims to minimize a sequence of global loss functions using only local computations and communications.
We develop novel D-OCO algorithms that can respectively reduce the regret bounds for convex and strongly convex functions.
Our algorithms are nearly optimal in terms of $T$, $n$, and $rho$.
arXiv Detail & Related papers (2024-02-14T13:44:16Z) - Projection-Free Methods for Stochastic Simple Bilevel Optimization with
Convex Lower-level Problem [16.9187409976238]
We study a class of convex bilevel optimization problems, also known as simple bilevel optimization.
We introduce novel bilevel optimization methods that approximate the solution set of the lower-level problem.
arXiv Detail & Related papers (2023-08-15T02:37:11Z) - Faster Stochastic Algorithms for Minimax Optimization under
Polyak--{\L}ojasiewicz Conditions [12.459354707528819]
We propose SPIDER-GDA for solving the finite-sum problem of the form $min_x max_y f(x,y)triqangle frac1n sum_i=1n f_i(x,y)$.
We prove SPIDER-GDA could find an $epsilon$-optimal solution within $mathcal Oleft((n + sqrtn,kappa_xkappa_y2)log (1/epsilon)
arXiv Detail & Related papers (2023-07-29T02:26:31Z) - An Optimal Stochastic Algorithm for Decentralized Nonconvex Finite-sum
Optimization [25.21457349137344]
We show a proof to show DEAREST requires at most $mathcal O(+sqrtmnLvarepsilon-2)$ first-order oracle (IFO) calls and $mathcal O(Lvarepsilon-2/sqrt1-lambda_W)$ communication rounds.
arXiv Detail & Related papers (2022-10-25T11:37:11Z) - Optimal Gradient Sliding and its Application to Distributed Optimization
Under Similarity [121.83085611327654]
We structured convex optimization problems with additive objective $r:=p + q$, where $r$ is $mu$-strong convex similarity.
We proposed a method to solve problems master to agents' communication and local calls.
The proposed method is much sharper than the $mathcalO(sqrtL_q/mu)$ method.
arXiv Detail & Related papers (2022-05-30T14:28:02Z) - Near Optimal Stochastic Algorithms for Finite-Sum Unbalanced
Convex-Concave Minimax Optimization [41.432757205864796]
This paper considers first-order algorithms for convex-con minimax problems of the form $min_bf xmax_yf(bfbf y) simultaneously.
Our methods can be used to solve more general unbalanced minimax problems and are also near optimal.
arXiv Detail & Related papers (2021-06-03T11:30:32Z) - Private Stochastic Convex Optimization: Optimal Rates in $\ell_1$
Geometry [69.24618367447101]
Up to logarithmic factors the optimal excess population loss of any $(varepsilon,delta)$-differently private is $sqrtlog(d)/n + sqrtd/varepsilon n.$
We show that when the loss functions satisfy additional smoothness assumptions, the excess loss is upper bounded (up to logarithmic factors) by $sqrtlog(d)/n + (log(d)/varepsilon n)2/3.
arXiv Detail & Related papers (2021-03-02T06:53:44Z) - Optimal Regret Algorithm for Pseudo-1d Bandit Convex Optimization [51.23789922123412]
We study online learning with bandit feedback (i.e. learner has access to only zeroth-order oracle) where cost/reward functions admit a "pseudo-1d" structure.
We show a lower bound of $min(sqrtdT, T3/4)$ for the regret of any algorithm, where $T$ is the number of rounds.
We propose a new algorithm sbcalg that combines randomized online gradient descent with a kernelized exponential weights method to exploit the pseudo-1d structure effectively.
arXiv Detail & Related papers (2021-02-15T08:16:51Z) - Streaming Complexity of SVMs [110.63976030971106]
We study the space complexity of solving the bias-regularized SVM problem in the streaming model.
We show that for both problems, for dimensions of $frac1lambdaepsilon$, one can obtain streaming algorithms with spacely smaller than $frac1lambdaepsilon$.
arXiv Detail & Related papers (2020-07-07T17:10:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.