Detecting ergodic bubbles at the crossover to many-body localization
using neural networks
- URL: http://arxiv.org/abs/2106.01811v3
- Date: Mon, 18 Oct 2021 09:16:48 GMT
- Title: Detecting ergodic bubbles at the crossover to many-body localization
using neural networks
- Authors: Tomasz Szoldra, Piotr Sierant, Korbinian Kottmann, Maciej Lewenstein,
and Jakub Zakrzewski
- Abstract summary: We propose an algorithm that allows to detect the ergodic bubbles using experimentally measurable two-site correlation functions.
Our results open new pathways in studies of the mechanisms of thermalization of disordered many-body systems and beyond.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The transition between ergodic and many-body localized phases is expected to
occur via an avalanche mechanism, in which \emph{ergodic bubbles} that arise
due to local fluctuations in system properties thermalize their surroundings
leading to delocalization of the system, unless the disorder is sufficiently
strong to stop this process. We propose an algorithm based on neural networks
that allows to detect the ergodic bubbles using experimentally measurable
two-site correlation functions. Investigating time evolution of the system, we
observe a logarithmic in time growth of the ergodic bubbles in the MBL regime.
The distribution of the size of ergodic bubbles converges during time evolution
to an exponentially decaying distribution in the MBL regime, and a power-law
distribution with a thermal peak in the critical regime, supporting thus the
scenario of delocalization through the avalanche mechanism. Our algorithm
permits to pin-point quantitative differences in time evolution of systems with
random and quasiperiodic potentials, as well as to identify rare (Griffiths)
events. Our results open new pathways in studies of the mechanisms of
thermalization of disordered many-body systems and beyond.
Related papers
- Phenomenology of many-body localization in bond-disordered spin chains [0.0]
Many-body localization hinders the thermalization of quantum many-body systems in the presence of strong disorder.
In this work, we study the MBL regime in bond-disordered spin-1/2 XXZ spin chain.
arXiv Detail & Related papers (2024-05-16T12:52:47Z) - Localization, fractality, and ergodicity in a monitored qubit [0.5892638927736115]
We study the statistical properties of a single two-level system (qubit) subject to repetitive ancilla-based measurements.
This setup is a fundamental minimal model for exploring the interplay between the unitary dynamics of the system and the nonunitaryity introduced by quantum measurements.
arXiv Detail & Related papers (2023-10-03T12:10:30Z) - Unbalanced Diffusion Schr\"odinger Bridge [71.31485908125435]
We introduce unbalanced DSBs which model the temporal evolution of marginals with arbitrary finite mass.
This is achieved by deriving the time reversal of differential equations with killing and birth terms.
We present two novel algorithmic schemes that comprise a scalable objective function for training unbalanced DSBs.
arXiv Detail & Related papers (2023-06-15T12:51:56Z) - Machine learning in and out of equilibrium [58.88325379746631]
Our study uses a Fokker-Planck approach, adapted from statistical physics, to explore these parallels.
We focus in particular on the stationary state of the system in the long-time limit, which in conventional SGD is out of equilibrium.
We propose a new variation of Langevin dynamics (SGLD) that harnesses without replacement minibatching.
arXiv Detail & Related papers (2023-06-06T09:12:49Z) - Entanglement and localization in long-range quadratic Lindbladians [49.1574468325115]
Signatures of localization have been observed in condensed matter and cold atomic systems.
We propose a model of one-dimensional chain of non-interacting, spinless fermions coupled to a local ensemble of baths.
We show that the steady state of the system undergoes a localization entanglement phase transition by tuning $p$ which remains stable in the presence of coherent hopping.
arXiv Detail & Related papers (2023-03-13T12:45:25Z) - Full counting statistics as probe of measurement-induced transitions in
the quantum Ising chain [62.997667081978825]
We show that local projective measurements induce a modification of the out-of-equilibrium probability distribution function of the local magnetization.
In particular we describe how the probability distribution of the former shows different behaviour in the area-law and volume-law regimes.
arXiv Detail & Related papers (2022-12-19T12:34:37Z) - Pair localization in dipolar systems with tunable positional disorder [0.0]
We study a Heisenberg XXZ spin model where the disorder is exclusively due to random spin-spin couplings.
We show that this system exhibits a localization crossover and identify strongly interacting pairs as emergent local conserved quantities.
arXiv Detail & Related papers (2022-07-29T04:31:47Z) - Emergent pair localization in a many-body quantum spin system [0.0]
Generically, non-integrable quantum systems are expected to thermalize as they comply with the Eigenstate Thermalization Hypothesis.
In the presence of strong disorder, the dynamics can possibly slow down to a degree that systems fail to thermalize on experimentally accessible timescales.
We study an ensemble of Heisenberg spins with a tunable distribution of random coupling strengths realized by a Rydberg quantum simulator.
arXiv Detail & Related papers (2022-07-28T16:31:18Z) - Finite-Size scaling analysis of many-body localization transition in
quasi-periodic spin chains [0.0]
We analyze the finite-size scaling of the average gap-ratio and the entanglement entropy across the many-body localization (MBL) transition in one dimensional Heisenberg spin-chain with quasi-periodic (QP) potential.
Our findings suggest that the MBL transition in the QP Heisenberg chain belongs to the class of Berezinskii-Kosterlitz-Thouless (BKT) transition.
arXiv Detail & Related papers (2021-09-17T08:35:22Z) - Localisation in quasiperiodic chains: a theory based on convergence of
local propagators [68.8204255655161]
We present a theory of localisation in quasiperiodic chains with nearest-neighbour hoppings, based on the convergence of local propagators.
Analysing the convergence of these continued fractions, localisation or its absence can be determined, yielding in turn the critical points and mobility edges.
Results are exemplified by analysing the theory for three quasiperiodic models covering a range of behaviour.
arXiv Detail & Related papers (2021-02-18T16:19:52Z) - Signatures of bath-induced quantum avalanches in a many-body--localized
system [47.187609203210705]
Quantum avalanches occur when the system is locally coupled to a small thermal inclusion that acts as a bath.
We realize an interface between a many-body--localized system and a thermal inclusion of variable size, and study its dynamics.
arXiv Detail & Related papers (2020-12-30T18:34:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.