Localization, fractality, and ergodicity in a monitored qubit
- URL: http://arxiv.org/abs/2310.01997v4
- Date: Mon, 25 Mar 2024 12:30:49 GMT
- Title: Localization, fractality, and ergodicity in a monitored qubit
- Authors: Paul Pöpperl, Igor V. Gornyi, David B. Saakian, Oleg M. Yevtushenko,
- Abstract summary: We study the statistical properties of a single two-level system (qubit) subject to repetitive ancilla-based measurements.
This setup is a fundamental minimal model for exploring the interplay between the unitary dynamics of the system and the nonunitaryity introduced by quantum measurements.
- Score: 0.5892638927736115
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the statistical properties of a single two-level system (qubit) subject to repetitive ancilla-based measurements. This setup is a fundamental minimal model for exploring the intricate interplay between the unitary dynamics of the system and the nonunitary stochasticity introduced by quantum measurements, which is central to the phenomenon of measurement-induced phase transitions. We demonstrate that this "toy model" harbors remarkably rich dynamics, manifesting in the distribution function of the qubit's quantum states in the long-time limit. We uncover a compelling analogy with the phenomenon of Anderson localization, albeit governed by distinct underlying mechanisms. Specifically, the state distribution function of the monitored qubit, parameterized by a single angle on the Bloch sphere, exhibits diverse types of behavior familiar from the theory of Anderson transitions, spanning from complete localization to almost uniform delocalization, with fractality occurring between the two limits. By combining analytical solutions for various special cases with two complementary numerical approaches, we achieve a comprehensive understanding of the structure delineating the "phase diagram" of the model. We categorize and quantify the emergent regimes and identify two distinct phases of the monitored qubit: ergodic and nonergodic. Furthermore, we identify a genuinely localized phase within the nonergodic phase, where the state distribution functions consist of delta peaks, as opposed to the delocalized phase characterized by extended distributions. Identification of these phases and demonstration of transitions between them in a monitored qubit are our main findings.
Related papers
- Complexity Measure Diagnostics of Ergodic to Many-Body Localization Transition [0.8192907805418583]
We introduce new diagnostics of the transition between the ergodic and many-body localization phases.
We use these complexity measures to analyze the power-law random banded matrix model.
arXiv Detail & Related papers (2024-04-24T16:00:31Z) - Quantum multifractality as a probe of phase space in the Dicke model [0.0]
We study the multifractal behavior of coherent states projected in the energy eigenbasis of the spin-boson Dicke Hamiltonian.
By examining the linear approximation and parabolic correction to the mass exponents, we find ergodic and multifractal coherent states.
arXiv Detail & Related papers (2023-07-07T19:04:26Z) - Evolution of many-body systems under ancilla quantum measurements [58.720142291102135]
We study the concept of implementing quantum measurements by coupling a many-body lattice system to an ancillary degree of freedom.
We find evidence of a disentangling-entangling measurement-induced transition as was previously observed in more abstract models.
arXiv Detail & Related papers (2023-03-13T13:06:40Z) - Asymptotic phase-locking and synchronization in two-qubit systems [0.0]
The paper concerns spontaneous phase-locking and synchronization in two-qubit continuous Markovian evolution described by Lindbladian dynamics with normal Lindblad operators.
The possibility of entanglement production playing the role of a phase-locking witness is rebutted by three analytically treatable examples.
arXiv Detail & Related papers (2022-10-13T19:45:26Z) - Accessing the topological Mott insulator in cold atom quantum simulators
with realistic Rydberg dressing [58.720142291102135]
We investigate a realistic scenario for the quantum simulation of such systems using cold Rydberg-dressed atoms in optical lattices.
We perform a detailed analysis of the phase diagram at half- and incommensurate fillings, in the mean-field approximation.
We furthermore study the stability of the phases with respect to temperature within the mean-field approximation.
arXiv Detail & Related papers (2022-03-28T14:55:28Z) - Topological transitions with continuously monitored free fermions [68.8204255655161]
We show the presence of a topological phase transition that is of a different universality class than that observed in stroboscopic projective circuits.
We find that this entanglement transition is well identified by a combination of the bipartite entanglement entropy and the topological entanglement entropy.
arXiv Detail & Related papers (2021-12-17T22:01:54Z) - Quantum correlations, entanglement spectrum and coherence of
two-particle reduced density matrix in the Extended Hubbard Model [62.997667081978825]
We study the ground state properties of the one-dimensional extended Hubbard model at half-filling.
In particular, in the superconducting region, we obtain that the entanglement spectrum signals a transition between a dominant singlet (SS) to triplet (TS) pairing ordering in the system.
arXiv Detail & Related papers (2021-10-29T21:02:24Z) - Localisation in quasiperiodic chains: a theory based on convergence of
local propagators [68.8204255655161]
We present a theory of localisation in quasiperiodic chains with nearest-neighbour hoppings, based on the convergence of local propagators.
Analysing the convergence of these continued fractions, localisation or its absence can be determined, yielding in turn the critical points and mobility edges.
Results are exemplified by analysing the theory for three quasiperiodic models covering a range of behaviour.
arXiv Detail & Related papers (2021-02-18T16:19:52Z) - Uncover quantumness in the crossover from BEC to quantum-correlated
phase [0.0]
We examine the role of the quantum entanglement of an assembly of two-level emitters coupled to a single-mode cavity.
This allows us to characterise the quantum correlated state for each regime.
arXiv Detail & Related papers (2021-01-18T05:06:59Z) - Measurement-Driven Phase Transition within a Volume-Law Entangled Phase [0.0]
We study a transition between two kinds of volume-law entangled phases in non-local but few-body unitary dynamics.
In one phase, a finite fraction belongs to a fully-entangled state, while in the second phase, the steady-state is a product state over extensively many, finite subsystems.
arXiv Detail & Related papers (2020-05-06T18:01:32Z) - Bulk detection of time-dependent topological transitions in quenched
chiral models [48.7576911714538]
We show that the winding number of the Hamiltonian eigenstates can be read-out by measuring the mean chiral displacement of a single-particle wavefunction.
This implies that the mean chiral displacement can detect the winding number even when the underlying Hamiltonian is quenched between different topological phases.
arXiv Detail & Related papers (2020-01-16T17:44:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.