Layered gradient accumulation and modular pipeline parallelism: fast and
efficient training of large language models
- URL: http://arxiv.org/abs/2106.02679v1
- Date: Fri, 4 Jun 2021 19:21:49 GMT
- Title: Layered gradient accumulation and modular pipeline parallelism: fast and
efficient training of large language models
- Authors: Joel Lamy-Poirier
- Abstract summary: We analyse the shortest possible training time for different configurations of distributed training.
We introduce two new methods, textitlayered gradient accumulation and textitmodular pipeline parallelism, which together cut the shortest training time by half.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The advent of the transformer has sparked a quick growth in the size of
language models, far outpacing hardware improvements. (Dense) transformers are
expected to reach the trillion-parameter scale in the near future, for which
training requires thousands or even tens of thousands of GPUs. We investigate
the challenges of training at this scale and beyond on commercially available
hardware. In particular, we analyse the shortest possible training time for
different configurations of distributed training, leveraging empirical scaling
laws for language models to estimate the optimal (critical) batch size.
Contrary to popular belief, we find no evidence for a memory wall, and instead
argue that the real limitation -- other than the cost -- lies in the training
duration.
In addition to this analysis, we introduce two new methods, \textit{layered
gradient accumulation} and \textit{modular pipeline parallelism}, which
together cut the shortest training time by half. The methods also reduce data
movement, lowering the network requirement to a point where a fast InfiniBand
connection is not necessary. This increased network efficiency also improve on
the methods introduced with the ZeRO optimizer, reducing the memory usage to a
tiny fraction of the available GPU memory.
Related papers
- Pipette: Automatic Fine-grained Large Language Model Training Configurator for Real-World Clusters [5.190794062263327]
Training large language models (LLMs) is known to be challenging because of the huge computational and memory capacity requirements.
We propose Pipette, which is an automatic fine-grained LLM training for real-world clusters.
arXiv Detail & Related papers (2024-05-28T11:59:44Z) - Partitioned Neural Network Training via Synthetic Intermediate Labels [0.0]
GPU memory constraints have become a notable bottleneck in training such sizable models.
This study advocates partitioning the model across GPU and generating synthetic intermediate labels to train individual segments.
This approach results in a more efficient training process that minimizes data communication while maintaining model accuracy.
arXiv Detail & Related papers (2024-03-17T13:06:29Z) - Time-, Memory- and Parameter-Efficient Visual Adaptation [75.28557015773217]
We propose an adaptation method which does not backpropagate gradients through the backbone.
We achieve this by designing a lightweight network in parallel that operates on features from the frozen, pretrained backbone.
arXiv Detail & Related papers (2024-02-05T10:55:47Z) - Winner-Take-All Column Row Sampling for Memory Efficient Adaptation of Language Model [89.8764435351222]
We propose a new family of unbiased estimators called WTA-CRS, for matrix production with reduced variance.
Our work provides both theoretical and experimental evidence that, in the context of tuning transformers, our proposed estimators exhibit lower variance compared to existing ones.
arXiv Detail & Related papers (2023-05-24T15:52:08Z) - Cramming: Training a Language Model on a Single GPU in One Day [64.18297923419627]
Recent trends in language modeling have focused on increasing performance through scaling.
We investigate the downstream performance achievable with a transformer-based language model trained completely from scratch with masked language modeling for a single day on a single consumer GPU.
We provide evidence that even in this constrained setting, performance closely follows scaling laws observed in large-compute settings.
arXiv Detail & Related papers (2022-12-28T18:59:28Z) - On-Device Training Under 256KB Memory [62.95579393237751]
We propose an algorithm-system co-design framework to make on-device training possible with only 256KB of memory.
Our framework is the first solution to enable tiny on-device training of convolutional neural networks under 256KB and 1MB Flash.
arXiv Detail & Related papers (2022-06-30T17:59:08Z) - Online Convolutional Re-parameterization [51.97831675242173]
We present online convolutional re- parameterization (OREPA), a two-stage pipeline, aiming to reduce the huge training overhead by squeezing the complex training-time block into a single convolution.
Compared with the state-of-the-art re-param models, OREPA is able to save the training-time memory cost by about 70% and accelerate the training speed by around 2x.
We also conduct experiments on object detection and semantic segmentation and show consistent improvements on the downstream tasks.
arXiv Detail & Related papers (2022-04-02T09:50:19Z) - Scaling Distributed Deep Learning Workloads beyond the Memory Capacity
with KARMA [58.040931661693925]
We propose a strategy that combines redundant recomputing and out-of-core methods.
We achieve an average of 1.52x speedup in six different models over the state-of-the-art out-of-core methods.
Our data parallel out-of-core solution can outperform complex hybrid model parallelism in training large models, e.g. Megatron-LM and Turning-NLG.
arXiv Detail & Related papers (2020-08-26T07:24:34Z) - Improving compute efficacy frontiers with SliceOut [31.864949424541344]
We introduce SliceOut -- a dropout-inspired scheme to train deep learning models faster without impacting final test accuracy.
At test time, turning off SliceOut performs an implicit ensembling across a linear number of architectures that preserves test accuracy.
This leads to faster processing of large computational workloads overall, and significantly reduce the resulting energy consumption and CO2emissions.
arXiv Detail & Related papers (2020-07-21T15:59:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.