Partitioned Neural Network Training via Synthetic Intermediate Labels
- URL: http://arxiv.org/abs/2403.11204v1
- Date: Sun, 17 Mar 2024 13:06:29 GMT
- Title: Partitioned Neural Network Training via Synthetic Intermediate Labels
- Authors: Cevat Volkan Karadağ, Nezih Topaloğlu,
- Abstract summary: GPU memory constraints have become a notable bottleneck in training such sizable models.
This study advocates partitioning the model across GPU and generating synthetic intermediate labels to train individual segments.
This approach results in a more efficient training process that minimizes data communication while maintaining model accuracy.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The proliferation of extensive neural network architectures, particularly deep learning models, presents a challenge in terms of resource-intensive training. GPU memory constraints have become a notable bottleneck in training such sizable models. Existing strategies, including data parallelism, model parallelism, pipeline parallelism, and fully sharded data parallelism, offer partial solutions. Model parallelism, in particular, enables the distribution of the entire model across multiple GPUs, yet the ensuing data communication between these partitions slows down training. Additionally, the substantial memory overhead required to store auxiliary parameters on each GPU compounds computational demands. Instead of using the entire model for training, this study advocates partitioning the model across GPUs and generating synthetic intermediate labels to train individual segments. These labels, produced through a random process, mitigate memory overhead and computational load. This approach results in a more efficient training process that minimizes data communication while maintaining model accuracy. To validate this method, a 6-layer fully connected neural network is partitioned into two parts and its performance is assessed on the extended MNIST dataset. Experimental results indicate that the proposed approach achieves similar testing accuracies to conventional training methods, while significantly reducing memory and computational requirements. This work contributes to mitigating the resource-intensive nature of training large neural networks, paving the way for more efficient deep learning model development.
Related papers
- Towards a Better Theoretical Understanding of Independent Subnetwork Training [56.24689348875711]
We take a closer theoretical look at Independent Subnetwork Training (IST)
IST is a recently proposed and highly effective technique for solving the aforementioned problems.
We identify fundamental differences between IST and alternative approaches, such as distributed methods with compressed communication.
arXiv Detail & Related papers (2023-06-28T18:14:22Z) - Training Deep Surrogate Models with Large Scale Online Learning [48.7576911714538]
Deep learning algorithms have emerged as a viable alternative for obtaining fast solutions for PDEs.
Models are usually trained on synthetic data generated by solvers, stored on disk and read back for training.
It proposes an open source online training framework for deep surrogate models.
arXiv Detail & Related papers (2023-06-28T12:02:27Z) - SWARM Parallelism: Training Large Models Can Be Surprisingly
Communication-Efficient [69.61083127540776]
Deep learning applications benefit from using large models with billions of parameters.
Training these models is notoriously expensive due to the need for specialized HPC clusters.
We consider alternative setups for training large models: using cheap "preemptible" instances or pooling existing resources from multiple regions.
arXiv Detail & Related papers (2023-01-27T18:55:19Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
Spiking neural networks (SNNs) have achieved orders of magnitude improvement in terms of energy consumption and latency.
We present an IPU-optimized release of our custom SNN Python package, snnTorch.
arXiv Detail & Related papers (2022-11-19T15:44:08Z) - SplitBrain: Hybrid Data and Model Parallel Deep Learning [11.63431725146897]
This paper presents SplitBrain, a high performance distributed deep learning framework supporting hybrid data and model parallelism.
Specifically, SplitBrain provides layer-specific partitioning that co-locates compute intensive convolutional layers while sharding memory demanding layers.
Results show that SplitBrain can achieve nearly linear speedup while saving up to 67% of memory consumption for data and model parallel VGG over CIFAR-10.
arXiv Detail & Related papers (2021-12-31T06:25:38Z) - Training Recommender Systems at Scale: Communication-Efficient Model and
Data Parallelism [56.78673028601739]
We propose a compression framework called Dynamic Communication Thresholding (DCT) for communication-efficient hybrid training.
DCT reduces communication by at least $100times$ and $20times$ during DP and MP, respectively.
It improves end-to-end training time for a state-of-the-art industrial recommender model by 37%, without any loss in performance.
arXiv Detail & Related papers (2020-10-18T01:44:42Z) - Benchmarking network fabrics for data distributed training of deep
neural networks [10.067102343753643]
Large computational requirements for training deep models have necessitated the development of new methods for faster training.
One such approach is the data parallel approach, where the training data is distributed across multiple compute nodes.
In this paper, we examine the effects of using different physical hardware interconnects and network-related software primitives for enabling data distributed deep learning.
arXiv Detail & Related papers (2020-08-18T17:38:30Z) - Deep Generative Models that Solve PDEs: Distributed Computing for
Training Large Data-Free Models [25.33147292369218]
Recent progress in scientific machine learning (SciML) has opened up the possibility of training novel neural network architectures that solve complex partial differential equations (PDEs)
Here we report on a software framework for data parallel distributed deep learning that resolves the twin challenges of training these large SciML models.
Our framework provides several out of the box functionality including (a) loss integrity independent of number of processes, (b) synchronized batch normalization, and (c) distributed higher-order optimization methods.
arXiv Detail & Related papers (2020-07-24T22:42:35Z) - Understanding the Effects of Data Parallelism and Sparsity on Neural
Network Training [126.49572353148262]
We study two factors in neural network training: data parallelism and sparsity.
Despite their promising benefits, understanding of their effects on neural network training remains elusive.
arXiv Detail & Related papers (2020-03-25T10:49:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.