Hidden Markov Modeling for Maximum Likelihood Neuron Reconstruction
- URL: http://arxiv.org/abs/2106.02701v1
- Date: Fri, 4 Jun 2021 20:24:56 GMT
- Title: Hidden Markov Modeling for Maximum Likelihood Neuron Reconstruction
- Authors: Thomas L. Athey, Daniel Tward, Ulrich Mueller, Michael I. Miller
- Abstract summary: Recent advances in brain clearing and imaging have made it possible to image entire mammalian brains at sub-micron resolution.
These images offer the potential to assemble brain-wide atlases of projection neuron morphology, but manual neuron reconstruction remains a bottleneck.
Here we present a method inspired by hidden Markov modeling and appearance modeling of fluorescent neuron images that can automatically trace neuronal processes.
- Score: 3.6321891270689055
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances in brain clearing and imaging have made it possible to image
entire mammalian brains at sub-micron resolution. These images offer the
potential to assemble brain-wide atlases of projection neuron morphology, but
manual neuron reconstruction remains a bottleneck. Here we present a method
inspired by hidden Markov modeling and appearance modeling of fluorescent
neuron images that can automatically trace neuronal processes. Our method
leverages dynamic programming to scale to terabyte sized image data and can be
applied to images with one or more neurons. We applied our algorithm to the
output of image segmentation models where false negatives severed neuronal
processes, and showed that it can follow axons in the presence of noise or
nearby neurons. Our method has the potential to be integrated into a semi or
fully automated reconstruction pipeline. Additionally, it creates a framework
through which users can intervene with hard constraints to, for example, rule
out certain reconstructions, or assign axons to particular cell bodies.
Related papers
- NeuroFly: A framework for whole-brain single neuron reconstruction [17.93211301158225]
We introduce NeuroFly, a validated framework for large-scale automatic single neuron reconstruction.
NeuroFly breaks down the process into three distinct stages: segmentation, connection, and proofreading.
Our goal is to foster collaboration among researchers to address the neuron reconstruction challenge.
arXiv Detail & Related papers (2024-11-07T13:56:13Z) - MindBridge: A Cross-Subject Brain Decoding Framework [60.58552697067837]
Brain decoding aims to reconstruct stimuli from acquired brain signals.
Currently, brain decoding is confined to a per-subject-per-model paradigm.
We present MindBridge, that achieves cross-subject brain decoding by employing only one model.
arXiv Detail & Related papers (2024-04-11T15:46:42Z) - Hebbian Learning based Orthogonal Projection for Continual Learning of
Spiking Neural Networks [74.3099028063756]
We develop a new method with neuronal operations based on lateral connections and Hebbian learning.
We show that Hebbian and anti-Hebbian learning on recurrent lateral connections can effectively extract the principal subspace of neural activities.
Our method consistently solves for spiking neural networks with nearly zero forgetting.
arXiv Detail & Related papers (2024-02-19T09:29:37Z) - Learning Multimodal Volumetric Features for Large-Scale Neuron Tracing [72.45257414889478]
We aim to reduce human workload by predicting connectivity between over-segmented neuron pieces.
We first construct a dataset, named FlyTracing, that contains millions of pairwise connections of segments expanding the whole fly brain.
We propose a novel connectivity-aware contrastive learning method to generate dense volumetric EM image embedding.
arXiv Detail & Related papers (2024-01-05T19:45:12Z) - Brain Captioning: Decoding human brain activity into images and text [1.5486926490986461]
We present an innovative method for decoding brain activity into meaningful images and captions.
Our approach takes advantage of cutting-edge image captioning models and incorporates a unique image reconstruction pipeline.
We evaluate our methods using quantitative metrics for both generated captions and images.
arXiv Detail & Related papers (2023-05-19T09:57:19Z) - POPPINS : A Population-Based Digital Spiking Neuromorphic Processor with
Integer Quadratic Integrate-and-Fire Neurons [50.591267188664666]
We propose a population-based digital spiking neuromorphic processor in 180nm process technology with two hierarchy populations.
The proposed approach enables the developments of biomimetic neuromorphic system and various low-power, and low-latency inference processing applications.
arXiv Detail & Related papers (2022-01-19T09:26:34Z) - Drop, Swap, and Generate: A Self-Supervised Approach for Generating
Neural Activity [33.06823702945747]
We introduce a novel unsupervised approach for learning disentangled representations of neural activity called Swap-VAE.
Our approach combines a generative modeling framework with an instance-specific alignment loss.
We show that it is possible to build representations that disentangle neural datasets along relevant latent dimensions linked to behavior.
arXiv Detail & Related papers (2021-11-03T16:39:43Z) - Rapid detection and recognition of whole brain activity in a freely
behaving Caenorhabditis elegans [18.788855494800238]
We propose a cascade solution for long-term and rapid recognition of head ganglion neurons in a freely moving textitC. elegans.
Under the constraint of a small number of training samples, our bottom-up approach is able to process each volume - $1024 times 1024 times 18$ in voxels - in less than 1 second.
Our work represents an important development towards a rapid and fully automated algorithm for decoding whole brain activity underlying natural animal behaviors.
arXiv Detail & Related papers (2021-09-22T01:33:54Z) - NeuroGen: activation optimized image synthesis for discovery
neuroscience [9.621977197691747]
We propose a novel computational strategy, which we call NeuroGen, to overcome limitations and develop a powerful tool for human vision neuroscience discovery.
NeuroGen combines an fMRI-trained neural encoding model of human vision with a deep generative network to synthesize images predicted to achieve a target pattern of macro-scale brain activation.
By using only a small number of synthetic images created by NeuroGen, we demonstrate that we can detect and amplify differences in regional and individual human brain response patterns to visual stimuli.
arXiv Detail & Related papers (2021-05-15T04:36:39Z) - Neural Cellular Automata Manifold [84.08170531451006]
We show that the neural network architecture of the Neural Cellular Automata can be encapsulated in a larger NN.
This allows us to propose a new model that encodes a manifold of NCA, each of them capable of generating a distinct image.
In biological terms, our approach would play the role of the transcription factors, modulating the mapping of genes into specific proteins that drive cellular differentiation.
arXiv Detail & Related papers (2020-06-22T11:41:57Z) - Neural Sparse Representation for Image Restoration [116.72107034624344]
Inspired by the robustness and efficiency of sparse coding based image restoration models, we investigate the sparsity of neurons in deep networks.
Our method structurally enforces sparsity constraints upon hidden neurons.
Experiments show that sparse representation is crucial in deep neural networks for multiple image restoration tasks.
arXiv Detail & Related papers (2020-06-08T05:15:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.