NeuroFly: A framework for whole-brain single neuron reconstruction
- URL: http://arxiv.org/abs/2411.04715v1
- Date: Thu, 07 Nov 2024 13:56:13 GMT
- Title: NeuroFly: A framework for whole-brain single neuron reconstruction
- Authors: Rubin Zhao, Yang Liu, Shiqi Zhang, Zijian Yi, Yanyang Xiao, Fang Xu, Yi Yang, Pencheng Zhou,
- Abstract summary: We introduce NeuroFly, a validated framework for large-scale automatic single neuron reconstruction.
NeuroFly breaks down the process into three distinct stages: segmentation, connection, and proofreading.
Our goal is to foster collaboration among researchers to address the neuron reconstruction challenge.
- Score: 17.93211301158225
- License:
- Abstract: Neurons, with their elongated, tree-like dendritic and axonal structures, enable efficient signal integration and long-range communication across brain regions. By reconstructing individual neurons' morphology, we can gain valuable insights into brain connectivity, revealing the structure basis of cognition, movement, and perception. Despite the accumulation of extensive 3D microscopic imaging data, progress has been considerably hindered by the absence of automated tools to streamline this process. Here we introduce NeuroFly, a validated framework for large-scale automatic single neuron reconstruction. This framework breaks down the process into three distinct stages: segmentation, connection, and proofreading. In the segmentation stage, we perform automatic segmentation followed by skeletonization to generate over-segmented neuronal fragments without branches. During the connection stage, we use a 3D image-based path following approach to extend each fragment and connect it with other fragments of the same neuron. Finally, human annotators are required only to proofread the few unresolved positions. The first two stages of our process are clearly defined computer vision problems, and we have trained robust baseline models to solve them. We validated NeuroFly's efficiency using in-house datasets that include a variety of challenging scenarios, such as dense arborizations, weak axons, images with contamination. We will release the datasets along with a suite of visualization and annotation tools for better reproducibility. Our goal is to foster collaboration among researchers to address the neuron reconstruction challenge, ultimately accelerating advancements in neuroscience research. The dataset and code are available at https://github.com/beanli161514/neurofly
Related papers
- Boosting 3D Neuron Segmentation with 2D Vision Transformer Pre-trained on Natural Images [10.790999324557179]
We propose a novel training paradigm that leverages a 2D Vision Transformer model pre-trained on large-scale natural images.
Our method builds a knowledge sharing connection between the abundant natural and the scarce neuron image domains to improve the 3D neuron segmentation ability.
Evaluated on a popular benchmark, BigNeuron, our method enhances neuron segmentation performance by 8.71% over the model trained from scratch.
arXiv Detail & Related papers (2024-05-04T14:57:28Z) - MindBridge: A Cross-Subject Brain Decoding Framework [60.58552697067837]
Brain decoding aims to reconstruct stimuli from acquired brain signals.
Currently, brain decoding is confined to a per-subject-per-model paradigm.
We present MindBridge, that achieves cross-subject brain decoding by employing only one model.
arXiv Detail & Related papers (2024-04-11T15:46:42Z) - Learning Multimodal Volumetric Features for Large-Scale Neuron Tracing [72.45257414889478]
We aim to reduce human workload by predicting connectivity between over-segmented neuron pieces.
We first construct a dataset, named FlyTracing, that contains millions of pairwise connections of segments expanding the whole fly brain.
We propose a novel connectivity-aware contrastive learning method to generate dense volumetric EM image embedding.
arXiv Detail & Related papers (2024-01-05T19:45:12Z) - Joint Learning Neuronal Skeleton and Brain Circuit Topology with Permutation Invariant Encoders for Neuron Classification [33.47541392305739]
We propose NeuNet framework that combines morphological information of neurons obtained from skeleton and topological information between neurons obtained from neural circuit.
We reprocess and release two new datasets for neuron classification task from volume electron microscopy(VEM) images of human brain cortex and Drosophila brain.
arXiv Detail & Related papers (2023-12-22T08:31:11Z) - PointNeuron: 3D Neuron Reconstruction via Geometry and Topology Learning
of Point Clouds [18.738943602529805]
We propose a novel framework for 3D neuron reconstruction.
Our key idea is to use the geometric representation power of the point cloud to better explore the intrinsic structural information of neurons.
arXiv Detail & Related papers (2022-10-15T14:11:56Z) - Cross-Modality Neuroimage Synthesis: A Survey [71.27193056354741]
Multi-modality imaging improves disease diagnosis and reveals distinct deviations in tissues with anatomical properties.
The existence of completely aligned and paired multi-modality neuroimaging data has proved its effectiveness in brain research.
An alternative solution is to explore unsupervised or weakly supervised learning methods to synthesize the absent neuroimaging data.
arXiv Detail & Related papers (2022-02-14T19:29:08Z) - Overcoming the Domain Gap in Neural Action Representations [60.47807856873544]
3D pose data can now be reliably extracted from multi-view video sequences without manual intervention.
We propose to use it to guide the encoding of neural action representations together with a set of neural and behavioral augmentations.
To reduce the domain gap, during training, we swap neural and behavioral data across animals that seem to be performing similar actions.
arXiv Detail & Related papers (2021-12-02T12:45:46Z) - Overcoming the Domain Gap in Contrastive Learning of Neural Action
Representations [60.47807856873544]
A fundamental goal in neuroscience is to understand the relationship between neural activity and behavior.
We generated a new multimodal dataset consisting of the spontaneous behaviors generated by fruit flies.
This dataset and our new set of augmentations promise to accelerate the application of self-supervised learning methods in neuroscience.
arXiv Detail & Related papers (2021-11-29T15:27:51Z) - Convolutional Neural Networks for cytoarchitectonic brain mapping at
large scale [0.33727511459109777]
We present a new workflow for mapping cytoarchitectonic areas in large series of cell-body stained histological sections of human postmortem brains.
It is based on a Deep Convolutional Neural Network (CNN), which is trained on a pair of section images with annotations, with a large number of un-annotated sections in between.
The new workflow does not require preceding 3D-reconstruction of sections, and is robust against histological artefacts.
arXiv Detail & Related papers (2020-11-25T16:25:13Z) - Non-linear Neurons with Human-like Apical Dendrite Activations [81.18416067005538]
We show that a standard neuron followed by our novel apical dendrite activation (ADA) can learn the XOR logical function with 100% accuracy.
We conduct experiments on six benchmark data sets from computer vision, signal processing and natural language processing.
arXiv Detail & Related papers (2020-02-02T21:09:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.