論文の概要: Making CNNs Interpretable by Building Dynamic Sequential Decision
Forests with Top-down Hierarchy Learning
- arxiv url: http://arxiv.org/abs/2106.02824v1
- Date: Sat, 5 Jun 2021 07:41:18 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-08 18:09:56.477221
- Title: Making CNNs Interpretable by Building Dynamic Sequential Decision
Forests with Top-down Hierarchy Learning
- Title(参考訳): トップダウン階層学習による動的順序決定林の構築によるCNNの解釈
- Authors: Yilin Wang, Shaozuo Yu, Xiaokang Yang, Wei Shen
- Abstract要約: 本稿では,CNN(Convlutional Neural Networks)を解釈可能なモデル転送方式を提案する。
我々は、CNNの上に微分可能な意思決定林を構築することで、これを実現する。
DDSDF(Dep Dynamic Sequential Decision Forest)と命名する。
- 参考スコア(独自算出の注目度): 62.82046926149371
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose a generic model transfer scheme to make
Convlutional Neural Networks (CNNs) interpretable, while maintaining their high
classification accuracy. We achieve this by building a differentiable decision
forest on top of CNNs, which enjoys two characteristics: 1) During training,
the tree hierarchies of the forest are learned in a top-down manner under the
guidance from the category semantics embedded in the pre-trained CNN weights;
2) During inference, a single decision tree is dynamically selected from the
forest for each input sample, enabling the transferred model to make sequential
decisions corresponding to the attributes shared by semantically-similar
categories, rather than directly performing flat classification. We name the
transferred model deep Dynamic Sequential Decision Forest (dDSDF). Experimental
results show that dDSDF not only achieves higher classification accuracy than
its conuterpart, i.e., the original CNN, but has much better interpretability,
as qualitatively it has plausible hierarchies and quantitatively it leads to
more precise saliency maps.
- Abstract(参考訳): 本稿では,CNN(Convlutional Neural Networks)を高い分類精度を維持しつつ解釈可能にする汎用モデル転送方式を提案する。
We achieve this by building a differentiable decision forest on top of CNNs, which enjoys two characteristics: 1) During training, the tree hierarchies of the forest are learned in a top-down manner under the guidance from the category semantics embedded in the pre-trained CNN weights; 2) During inference, a single decision tree is dynamically selected from the forest for each input sample, enabling the transferred model to make sequential decisions corresponding to the attributes shared by semantically-similar categories, rather than directly performing flat classification.
我々は、転送モデルディープダイナミックシーケンシャル決定フォレスト(ddsdf)と命名する。
実験の結果,ddsdfはコナターパート,すなわち元のcnnよりも高い分類精度を達成できるだけでなく,質的にも正確な階層構造を有し,定量的により正確な塩分マップを導出することが明らかとなった。
関連論文リスト
- Informed deep hierarchical classification: a non-standard analysis inspired approach [0.0]
出力層の前に配置された特定のプロジェクション演算子を備えた多出力ディープニューラルネットワークで構成されている。
このようなアーキテクチャの設計は、LH-DNN(Lexicographic Hybrid Deep Neural Network)と呼ばれ、異なる研究分野と非常に離れた研究分野のツールを組み合わせることで実現されている。
アプローチの有効性を評価するために、階層的な分類タスクに適した畳み込みニューラルネットワークであるB-CNNと比較する。
論文 参考訳(メタデータ) (2024-09-25T14:12:50Z) - An Explainable Model-Agnostic Algorithm for CNN-based Biometrics
Verification [55.28171619580959]
本稿では,生体認証環境下でのLIME(Local Interpretable Model-Agnostic Explanations)AI手法の適用について述べる。
論文 参考訳(メタデータ) (2023-07-25T11:51:14Z) - Do We Really Need a Learnable Classifier at the End of Deep Neural
Network? [118.18554882199676]
本研究では、ニューラルネットワークを学習して分類器をランダムにETFとして分類し、訓練中に固定する可能性について検討する。
実験結果から,バランスの取れたデータセットの画像分類において,同様の性能が得られることがわかった。
論文 参考訳(メタデータ) (2022-03-17T04:34:28Z) - Meta Ordinal Regression Forest for Medical Image Classification with
Ordinal Labels [37.121792169424744]
そこで本研究では, 医用画像分類のためのメタ・オーディショナル・レグレッション・フォレスト (MORF) 法を提案する。
MORFは、畳み込みニューラルネットワークとディファレンシャルフォレストを組み合わせて、メタラーニングフレームワークで順序関係を学習する。
序列ラベルを用いた2つの医用画像分類データセットの実験結果から,既存の最先端手法よりもMORF法の方が優れた性能を示した。
論文 参考訳(メタデータ) (2022-03-15T08:43:57Z) - Deep Neural Decision Forest for Acoustic Scene Classification [45.886356124352226]
音響シーン分類(ASC)は、録音環境の特性に基づいて音声クリップを分類することを目的としている。
深層神経決定林(DNDF)を用いたASCの新しいアプローチを提案する。
論文 参考訳(メタデータ) (2022-03-07T14:39:42Z) - An evidential classifier based on Dempster-Shafer theory and deep
learning [6.230751621285322]
Dempster-Shafer(DS)理論に基づく新しい分類システムと、集合値分類のための畳み込みニューラルネットワーク(CNN)アーキテクチャを提案する。
画像認識,信号処理,セマンティック-リレーションシップ分類タスクに関する実験では,深部CNN,DS層,期待されるユーティリティ層の組み合わせにより,分類精度の向上が図られている。
論文 参考訳(メタデータ) (2021-03-25T01:29:05Z) - Growing Deep Forests Efficiently with Soft Routing and Learned
Connectivity [79.83903179393164]
この論文は、いくつかの重要な側面で深い森林のアイデアをさらに拡張します。
我々は、ノードがハードバイナリ決定ではなく、確率的ルーティング決定、すなわちソフトルーティングを行う確率的ツリーを採用する。
MNISTデータセットの実験は、私たちの力のある深部森林が[1]、[3]よりも優れたまたは匹敵するパフォーマンスを達成できることを示しています。
論文 参考訳(メタデータ) (2020-12-29T18:05:05Z) - Succinct Explanations With Cascading Decision Trees [5.877164140116815]
そこで我々はCascading Decision Treesと呼ぶ新しい決定木モデルを提案する。
私たちの重要な洞察は、意思決定パスと説明パスの概念を分離することです。
カスケード決定木を新しいサンプルに適用すると、非常に短く簡潔な説明が得られる。
論文 参考訳(メタデータ) (2020-10-13T18:48:39Z) - Fine-Grained Visual Classification with Efficient End-to-end
Localization [49.9887676289364]
本稿では,エンド・ツー・エンドの設定において,分類ネットワークと融合可能な効率的なローカライゼーションモジュールを提案する。
我々は,CUB200-2011,Stanford Cars,FGVC-Aircraftの3つのベンチマークデータセット上で,新しいモデルを評価する。
論文 参考訳(メタデータ) (2020-05-11T14:07:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。