Hierarchy and robustness of multilevel two-time temporal quantum
correlations
- URL: http://arxiv.org/abs/2106.02844v1
- Date: Sat, 5 Jun 2021 09:03:17 GMT
- Title: Hierarchy and robustness of multilevel two-time temporal quantum
correlations
- Authors: Dawid Maskalaniec, Karol Bartkiewicz
- Abstract summary: Quantum steering refers to correlations that can be classified as intermediate between entanglement and Bell nonlocality.
We show that temporal counterparts of Bell nonlocality and entanglement can be quantified with a temporal nonlocality robustness and temporal entanglement robustness.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum steering refers to correlations that can be classified as
intermediate between entanglement and Bell nonlocality. Every state exhibiting
Bell nonlocality exhibits also quantum steering and every state exhibiting
quantum steering is also entangled. In low dimensional cases similar
hierarchical relations have been observed between the temporal counterparts of
these correlations. Here, we study the hierarchy of such temporal correlations
for a general multilevel quantum system. We demonstrate that the same hierarchy
holds for two definitions of state over time. In order to compare different
types of temporal correlations, we show that temporal counterparts of Bell
nonlocality and entanglement can be quantified with a temporal nonlocality
robustness and temporal entanglement robustness. Our numerical result reveal
that in contrast to temporal steering, for temporal nonlocality to manifest
itself we require the initial state not to be in a completely mixed state.
Related papers
- Relationship between average correlation and quantum steering for arbitrary two-qubit states [0.3749861135832073]
We establish the relationship between the average correlation and the violation of the three-setting linear steering inequality for two-qubit systems.
For a given class of states, the hierarchy of nonclassicality-steering-Bell nonlocality is demonstrated.
arXiv Detail & Related papers (2024-10-15T03:05:43Z) - Temporal Bell inequalities in a many-body system [0.0]
We show that a temporal Clauser-Horne inequality for two spins is violated for nonzero time interval between the measurements if the two measured parties are connected by a spin chain.
Our result suggests that, as expected in a many-body setup, the Lieb-Robinson bound substitutes the speed of light as the fundamental limit for the spreading of information.
arXiv Detail & Related papers (2024-09-25T19:00:47Z) - Entanglement of temporal sections as quantum histories and their quantum correlation bounds [0.0]
We consider quantum history bundles based on the temporal manifold and show the source of violation of monogamous temporal Bell-like inequalities.
As a generalization of temporal Bell-like inequalities, we derive the quantum bound for multi-time Bell-like inequalities.
arXiv Detail & Related papers (2024-01-25T08:17:22Z) - Causal classification of spatiotemporal quantum correlations [0.0]
We show that certain quantum correlations possess an intrinsic arrow of time, and enable classification of general quantum correlations across space-time.
Our results indicate that certain quantum correlations possess an intrinsic arrow of time, and enable classification of general quantum correlations across space-time based on their (in)compatibility with various underlying causal structures.
arXiv Detail & Related papers (2023-06-15T17:59:18Z) - Observing super-quantum correlations across the exceptional point in a
single, two-level trapped ion [48.7576911714538]
In two-level quantum systems - qubits - unitary dynamics theoretically limit these quantum correlations to $2qrt2$ or 1.5 respectively.
Here, using a dissipative, trapped $40$Ca$+$ ion governed by a two-level, non-Hermitian Hamiltonian, we observe correlation values up to 1.703(4) for the Leggett-Garg parameter $K_3$.
These excesses occur across the exceptional point of the parity-time symmetric Hamiltonian responsible for the qubit's non-unitary, coherent dynamics.
arXiv Detail & Related papers (2023-04-24T19:44:41Z) - Physical interpretation of nonlocal quantum correlation through local
description of subsystems [19.542805787744133]
We propose the physical interpretation of nonlocal quantum correlation between two systems.
Different nonlocal quantum correlations can be discriminated from a single uncertainty relation derived under local hidden state (LHS)-LHS model only.
arXiv Detail & Related papers (2022-10-01T10:13:40Z) - Entropic Accord: A new measure in the quantum correlation hierarchy [0.5039813366558306]
We show a new measure of quantum correlations which we call entropic accord that fits between entanglement and discord.
We study two-qubit states which shows the relationship between the three entropic quantities.
arXiv Detail & Related papers (2022-05-13T07:16:50Z) - Out-of-time-order correlator in the quantum Rabi model [62.997667081978825]
We show that out-of-time-order correlator derived from the Loschmidt echo signal quickly saturates in the normal phase.
We show that the effective time-averaged dimension of the quantum Rabi system can be large compared to the spin system size.
arXiv Detail & Related papers (2022-01-17T10:56:57Z) - Genuine Multipartite Correlations in a Boundary Time Crystal [56.967919268256786]
We study genuine multipartite correlations (GMC's) in a boundary time crystal (BTC)
We analyze both (i) the structure (orders) of GMC's among the subsystems, as well as (ii) their build-up dynamics for an initially uncorrelated state.
arXiv Detail & Related papers (2021-12-21T20:25:02Z) - Equivalence of approaches to relational quantum dynamics in relativistic
settings [68.8204255655161]
We show that the trinity' of relational quantum dynamics holds in relativistic settings per frequency superselection sector.
We ascribe the time according to the clock subsystem to a POVM which is covariant with respect to its (quadratic) Hamiltonian.
arXiv Detail & Related papers (2020-07-01T16:12:24Z) - Synchronisation phase as an indicator of persistent quantum correlations
between subsystems [68.8204255655161]
Spontaneous synchronisation is a collective phenomenon that can occur in both dynamical classical and quantum systems.
We show that our analysis applies to a variety of spontaneously synchronising open quantum systems.
arXiv Detail & Related papers (2020-06-29T17:21:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.