Causal classification of spatiotemporal quantum correlations
- URL: http://arxiv.org/abs/2306.09336v2
- Date: Mon, 23 Sep 2024 07:20:41 GMT
- Title: Causal classification of spatiotemporal quantum correlations
- Authors: Minjeong Song, Varun Narasimhachar, Bartosz Regula, Thomas J. Elliott, Mile Gu,
- Abstract summary: We show that certain quantum correlations possess an intrinsic arrow of time, and enable classification of general quantum correlations across space-time.
Our results indicate that certain quantum correlations possess an intrinsic arrow of time, and enable classification of general quantum correlations across space-time based on their (in)compatibility with various underlying causal structures.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: From correlations in measurement outcomes alone, can two otherwise isolated parties establish whether such correlations are atemporal? That is, can they rule out that they have been given the same system at two different times? Classical statistics says no, yet quantum theory disagrees. Here, we introduce the necessary and sufficient conditions by which such quantum correlations can be identified as atemporal. We demonstrate the asymmetry of atemporality under time reversal, and reveal it to be a measure of spatial quantum correlation distinct from entanglement. Our results indicate that certain quantum correlations possess an intrinsic arrow of time, and enable classification of general quantum correlations across space-time based on their (in)compatibility with various underlying causal structures.
Related papers
- Almost-quantum correlations violate the isotropy and homogeneity principles in flat space [0.0]
Almost quantum correlations are a post-quantum model which satisfies all kinematics of standard quantum correlations except one.
We invoke the isotropy and homogeneity principles of the flat space as a conclusive and distinguishing criterion to rule out the almost-quantum correlations model.
We prove that this condition is sufficient (and necessary) to reduce the almost quantum correlations model to quantum mechanics in both bipartite and multipartite systems.
arXiv Detail & Related papers (2024-11-12T08:21:54Z) - Operator representation of spatiotemporal quantum correlations [0.0]
We prove that there does not exist an operator representation for general quantum correlations across space and time.
In the case of qutrit systems, we use our results to illustrate an intriguing connection between light-touch observables and symmetric, informationally complete, positive operator-valued measures.
arXiv Detail & Related papers (2024-05-27T18:00:02Z) - Two-time quantities as elements of physical reality [41.94295877935867]
We argue that a two-time correlator should actually be regarded as an average involving a novel single physical observable.
We provide examples showing that the presumed constituents of a two-time correlator and the proposed two-time operator itself cannot be simultaneous elements of the physical reality.
arXiv Detail & Related papers (2024-04-16T16:15:26Z) - Quantum Causal Inference with Extremely Light Touch [0.0]
We give an explicit quantum causal inference scheme using quantum observations alone.
We derive a closed-form expression for the space-time pseudo-density matrix associated with many times and qubits.
We prove that if there is no signalling between two subsystems, the associated reduced state of the pseudo-density matrix cannot have negativity.
arXiv Detail & Related papers (2023-03-19T02:59:05Z) - Bell inequalities with overlapping measurements [52.81011822909395]
We study Bell inequalities where measurements of different parties can have overlap.
This allows to accommodate problems in quantum information.
The scenarios considered show an interesting behaviour with respect to Hilbert space dimension, overlap, and symmetry.
arXiv Detail & Related papers (2023-03-03T18:11:05Z) - Hierarchy and robustness of multilevel two-time temporal quantum
correlations [0.0]
Quantum steering refers to correlations that can be classified as intermediate between entanglement and Bell nonlocality.
We show that temporal counterparts of Bell nonlocality and entanglement can be quantified with a temporal nonlocality robustness and temporal entanglement robustness.
arXiv Detail & Related papers (2021-06-05T09:03:17Z) - Enhancing nonclassical bosonic correlations in a Quantum Walk network
through experimental control of disorder [50.591267188664666]
We experimentally realize a controllable inhomogenous Quantum Walk dynamics.
We observe two photon states which exhibit an enhancement in the quantum correlations between two modes of the network.
arXiv Detail & Related papers (2021-02-09T10:57:00Z) - Equivalence of approaches to relational quantum dynamics in relativistic
settings [68.8204255655161]
We show that the trinity' of relational quantum dynamics holds in relativistic settings per frequency superselection sector.
We ascribe the time according to the clock subsystem to a POVM which is covariant with respect to its (quadratic) Hamiltonian.
arXiv Detail & Related papers (2020-07-01T16:12:24Z) - Quantum time dilation: A new test of relativistic quantum theory [91.3755431537592]
A novel quantum time dilation effect is shown to arise when a clock moves in a quantum superposition of two relativistic velocities.
This effect is argued to be measurable using existing atomic interferometry techniques, potentially offering a new test of relativistic quantum theory.
arXiv Detail & Related papers (2020-04-22T19:26:53Z) - Quantum correlations in time [2.0373030742807545]
We investigate quantum correlations in time in different approaches.
With the exception of amplitude-weighted correlations in the path integral formalism, temporal correlations in the different approaches are the same or operationally equivalent.
arXiv Detail & Related papers (2020-02-24T18:53:00Z) - Interference of Clocks: A Quantum Twin Paradox [39.645665748998816]
Phase of matter waves depends on proper time and is susceptible to special-relativistic (kinematic) and gravitational (redshift) time dilation.
It is conceivable that atom interferometers measure general-relativistic time-dilation effects.
We show that closed light-pulse interferometers without clock transitions during the pulse sequence are not sensitive to gravitational time dilation in a linear potential.
arXiv Detail & Related papers (2019-05-22T12:30:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.