論文の概要: Sensor Fusion-based GNSS Spoofing Attack Detection Framework for
Autonomous Vehicles
- arxiv url: http://arxiv.org/abs/2106.02982v1
- Date: Sat, 5 Jun 2021 23:02:55 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-08 17:24:16.729672
- Title: Sensor Fusion-based GNSS Spoofing Attack Detection Framework for
Autonomous Vehicles
- Title(参考訳): センサフュージョンを用いた自律走行車用GNSSスポーフィング検出フレームワーク
- Authors: Sagar Dasgupta, Mizanur Rahman, Mhafuzul Islam, Mashrur Chowdhury
- Abstract要約: 自律走行車のための3つの同時戦略からなる,センサフュージョンに基づく攻撃検出フレームワークを提案する。
複数の低コストの車載センサーからのデータを融合し、リカレントニューラルネットワークモデルに入力する。
我々はk-Nearest Neighbors (k-NN) と Dynamic Time Warping (DTW) のアルゴリズムを組み合わせて、操舵角センサからのデータを用いて回転を検出する。
解析の結果,センサフュージョンに基づく検出フレームワークは,必要な計算遅延閾値内で,3種類のスプーフィング攻撃をすべて検出できることがわかった。
- 参考スコア(独自算出の注目度): 4.947150829838588
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this study, a sensor fusion based GNSS spoofing attack detection framework
is presented that consists of three concurrent strategies for an autonomous
vehicle (AV): (i) prediction of location shift, (ii) detection of turns (left
or right), and (iii) recognition of motion state (including standstill state).
Data from multiple low-cost in-vehicle sensors (i.e., accelerometer, steering
angle sensor, speed sensor, and GNSS) are fused and fed into a recurrent neural
network model, which is a long short-term memory (LSTM) network for predicting
the location shift, i.e., the distance that an AV travels between two
consecutive timestamps. We have then combined k-Nearest Neighbors (k-NN) and
Dynamic Time Warping (DTW) algorithms to detect turns using data from the
steering angle sensor. In addition, data from an AV's speed sensor is used to
recognize the AV's motion state including the standstill state. To prove the
efficacy of the sensor fusion-based attack detection framework, attack datasets
are created for three unique and sophisticated spoofing attacks turn by turn,
overshoot, and stop using the publicly available real-world Honda Research
Institute Driving Dataset (HDD). Our analysis reveals that the sensor
fusion-based detection framework successfully detects all three types of
spoofing attacks within the required computational latency threshold.
- Abstract(参考訳): 本研究では,自律走行車両 (av) に対する同時戦略として, (i) 位置シフトの予測, (ii) 旋回(左右) 検出, (iii) 静止状態(静止状態を含む)の認識の3つからなる, gnssスプーフィング攻撃検出フレームワークを提案する。
複数の低コストの車載センサー(加速度計、操舵角センサ、速度センサ、GNSS)からのデータを融合して、2つの連続するタイムスタンプ間をAVが移動する距離を予測するための長い短期記憶(LSTM)ネットワークであるリカレントニューラルネットワークモデルに供給する。
次に、k-Nearest Neighbors (k-NN) と Dynamic Time Warping (DTW) のアルゴリズムを組み合わせて、操舵角センサのデータを用いて回転を検出する。
また、AV速度センサからのデータは、静止状態を含むAVの動作状態を認識するために使用される。
センサーフュージョンベースの攻撃検出フレームワークの有効性を証明するために、アタックデータセットは3つのユニークで洗練されたスプーフィング攻撃に対してターンバイターンで作成され、オーバーシュートされ、公開の現実世界のHonda Research Institute Driving Dataset(HDD)を使用するのをやめる。
解析の結果,センサフュージョンに基づく検出フレームワークは,必要な計算遅延閾値内で,3種類のスプーフィング攻撃をすべて検出できることがわかった。
関連論文リスト
- Experimental Validation of Sensor Fusion-based GNSS Spoofing Attack
Detection Framework for Autonomous Vehicles [5.624009710240032]
本稿では,自動走行車に対するセンサフュージョンを用いたスプーフィング攻撃検出フレームワークを提案する。
アラバマ州タスカルーサで実験が行われ、都市部の道路構造を模倣している。
結果は、遅いドリフト攻撃を含む様々な高度なスプーフ攻撃を検出できるフレームワークの能力を実証している。
論文 参考訳(メタデータ) (2024-01-02T17:30:46Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
本研究では,新しい運転環境に3次元物体検出器を適応させる手法を提案する。
提案手法は,空間的量子化履歴特徴を用いたLiDARに基づく検出モデルを強化する。
実世界のデータセットの実験では、大幅な改善が示されている。
論文 参考訳(メタデータ) (2023-09-21T15:00:31Z) - Multi-Modal 3D Object Detection by Box Matching [109.43430123791684]
マルチモーダル3次元検出のためのボックスマッチング(FBMNet)による新しいフュージョンネットワークを提案する。
3Dオブジェクトと2Dオブジェクトの提案を学習することで、ROI特徴を組み合わせることで、検出のための融合を効果的に行うことができる。
論文 参考訳(メタデータ) (2023-05-12T18:08:51Z) - Rethinking Voxelization and Classification for 3D Object Detection [68.8204255655161]
LiDARポイントクラウドからの3Dオブジェクト検出の主な課題は、ネットワークの信頼性に影響を与えることなく、リアルタイムのパフォーマンスを実現することである。
本稿では,高速な動的ボキセラライザを実装することにより,ネットワークの推論速度と精度を同時に向上するソリューションを提案する。
さらに,予測対象を分類し,偽検出対象をフィルタリングする軽量検出サブヘッドモデルを提案する。
論文 参考訳(メタデータ) (2023-01-10T16:22:04Z) - Correlating sparse sensing for large-scale traffic speed estimation: A
Laplacian-enhanced low-rank tensor kriging approach [76.45949280328838]
本稿では,Laplacian enhanced Low-rank tensor (LETC) フレームワークを提案する。
次に,提案したモデルをネットワークワイド・クリグにスケールアップするために,複数の有効な数値手法を用いて効率的な解アルゴリズムを設計する。
論文 参考訳(メタデータ) (2022-10-21T07:25:57Z) - Minkowski Tracker: A Sparse Spatio-Temporal R-CNN for Joint Object
Detection and Tracking [53.64390261936975]
我々はオブジェクトの検出と追跡を共同で解決するスパース時間R-CNNであるMinkowski Trackerを提案する。
領域ベースCNN(R-CNN)に着想を得て,物体検出器R-CNNの第2段階として動きを追跡することを提案する。
大規模実験では,本手法の総合的な性能向上は4つの要因によることがわかった。
論文 参考訳(メタデータ) (2022-08-22T04:47:40Z) - A Sensor Fusion-based GNSS Spoofing Attack Detection Framework for
Autonomous Vehicles [4.947150829838588]
本稿では,センサフュージョンをベースとしたGNSS(Global Navigation Satellite System)スプーフィング攻撃検出フレームワークを提案する。
複数の低コストの車載センサーからのデータを融合し、リカレントニューラルネットワークモデルに入力する。
我々は,k-Nearest Neighbors (k-NN) と Dynamic Time Warping (DTW) のアルゴリズムを組み合わせて,左旋回と右旋回を検出・分類した。
論文 参考訳(メタデータ) (2021-08-19T11:59:51Z) - Radar Voxel Fusion for 3D Object Detection [0.0]
本稿では,3次元物体検出のための低レベルセンサ融合ネットワークを開発する。
レーダーセンサーの融合は、雨や夜景のような裂け目状態において特に有益である。
論文 参考訳(メタデータ) (2021-06-26T20:34:12Z) - Prediction-Based GNSS Spoofing Attack Detection for Autonomous Vehicles [5.579370215490055]
我々は,長期記憶(LSTM)モデルを用いた予測に基づくスプーフィング攻撃検出戦略を開発した。
現在の位置と直近の場所との間を走行する予測距離に基づいてしきい値を確立する。
分析の結果,予測に基づくスプーフ攻撃検出戦略により,リアルタイムで攻撃を検知できることが判明した。
論文 参考訳(メタデータ) (2020-10-16T18:26:59Z) - YOdar: Uncertainty-based Sensor Fusion for Vehicle Detection with Camera
and Radar Sensors [4.396860522241306]
本稿では,カメラとレーダデータとのセンサ融合のための不確実性に基づく手法を提案する。
実験では、YOLOv3オブジェクト検出ネットワークと、カスタマイズされた1D$レーダセグメンテーションネットワークを組み合わせる。
実験の結果,この不確実性認識融合のアプローチは単一センサのベースラインに比べて性能が著しく向上することがわかった。
論文 参考訳(メタデータ) (2020-10-07T10:40:02Z) - Adaptive Anomaly Detection for IoT Data in Hierarchical Edge Computing [71.86955275376604]
本稿では,階層型エッジコンピューティング(HEC)システムに対する適応型異常検出手法を提案する。
本研究では,入力データから抽出した文脈情報に基づいてモデルを選択する適応的手法を設計し,異常検出を行う。
提案手法を実際のIoTデータセットを用いて評価し,検出タスクをクラウドにオフロードするのとほぼ同じ精度を維持しながら,検出遅延を84%削減できることを実証した。
論文 参考訳(メタデータ) (2020-01-10T05:29:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。