Noisy Correspondence Learning with Self-Reinforcing Errors Mitigation
- URL: http://arxiv.org/abs/2312.16478v1
- Date: Wed, 27 Dec 2023 09:03:43 GMT
- Title: Noisy Correspondence Learning with Self-Reinforcing Errors Mitigation
- Authors: Zhuohang Dang, Minnan Luo, Chengyou Jia, Guang Dai, Xiaojun Chang,
Jingdong Wang
- Abstract summary: Cross-modal retrieval relies on well-matched large-scale datasets that are laborious in practice.
We introduce a novel noisy correspondence learning framework, namely textbfSelf-textbfReinforcing textbfErrors textbfMitigation (SREM)
- Score: 63.180725016463974
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cross-modal retrieval relies on well-matched large-scale datasets that are
laborious in practice. Recently, to alleviate expensive data collection,
co-occurring pairs from the Internet are automatically harvested for training.
However, it inevitably includes mismatched pairs, \ie, noisy correspondences,
undermining supervision reliability and degrading performance. Current methods
leverage deep neural networks' memorization effect to address noisy
correspondences, which overconfidently focus on \emph{similarity-guided
training with hard negatives} and suffer from self-reinforcing errors. In light
of above, we introduce a novel noisy correspondence learning framework, namely
\textbf{S}elf-\textbf{R}einforcing \textbf{E}rrors \textbf{M}itigation (SREM).
Specifically, by viewing sample matching as classification tasks within the
batch, we generate classification logits for the given sample. Instead of a
single similarity score, we refine sample filtration through energy uncertainty
and estimate model's sensitivity of selected clean samples using swapped
classification entropy, in view of the overall prediction distribution.
Additionally, we propose cross-modal biased complementary learning to leverage
negative matches overlooked in hard-negative training, further improving model
optimization stability and curbing self-reinforcing errors. Extensive
experiments on challenging benchmarks affirm the efficacy and efficiency of
SREM.
Related papers
- Foster Adaptivity and Balance in Learning with Noisy Labels [26.309508654960354]
We propose a novel approach named textbfSED to deal with label noise in a textbfSelf-adaptivtextbfE and class-balancetextbfD manner.
A mean-teacher model is then employed to correct labels of noisy samples.
We additionally propose a self-adaptive and class-balanced sample re-weighting mechanism to assign different weights to detected noisy samples.
arXiv Detail & Related papers (2024-07-03T03:10:24Z) - Rethinking Classifier Re-Training in Long-Tailed Recognition: A Simple
Logits Retargeting Approach [102.0769560460338]
We develop a simple logits approach (LORT) without the requirement of prior knowledge of the number of samples per class.
Our method achieves state-of-the-art performance on various imbalanced datasets, including CIFAR100-LT, ImageNet-LT, and iNaturalist 2018.
arXiv Detail & Related papers (2024-03-01T03:27:08Z) - Learning with Noisy Labels Using Collaborative Sample Selection and
Contrastive Semi-Supervised Learning [76.00798972439004]
Collaborative Sample Selection (CSS) removes noisy samples from identified clean set.
We introduce a co-training mechanism with a contrastive loss in semi-supervised learning.
arXiv Detail & Related papers (2023-10-24T05:37:20Z) - Class-Adaptive Self-Training for Relation Extraction with Incompletely
Annotated Training Data [43.46328487543664]
Relation extraction (RE) aims to extract relations from sentences and documents.
Recent studies showed that many RE datasets are incompletely annotated.
This is known as the false negative problem in which valid relations are falsely annotated as 'no_relation'
arXiv Detail & Related papers (2023-06-16T09:01:45Z) - Boosting Differentiable Causal Discovery via Adaptive Sample Reweighting [62.23057729112182]
Differentiable score-based causal discovery methods learn a directed acyclic graph from observational data.
We propose a model-agnostic framework to boost causal discovery performance by dynamically learning the adaptive weights for the Reweighted Score function, ReScore.
arXiv Detail & Related papers (2023-03-06T14:49:59Z) - Learning from Data with Noisy Labels Using Temporal Self-Ensemble [11.245833546360386]
Deep neural networks (DNNs) have an enormous capacity to memorize noisy labels.
Current state-of-the-art methods present a co-training scheme that trains dual networks using samples associated with small losses.
We propose a simple yet effective robust training scheme that operates by training only a single network.
arXiv Detail & Related papers (2022-07-21T08:16:31Z) - Robust Training under Label Noise by Over-parameterization [41.03008228953627]
We propose a principled approach for robust training of over-parameterized deep networks in classification tasks where a proportion of training labels are corrupted.
The main idea is yet very simple: label noise is sparse and incoherent with the network learned from clean data, so we model the noise and learn to separate it from the data.
Remarkably, when trained using such a simple method in practice, we demonstrate state-of-the-art test accuracy against label noise on a variety of real datasets.
arXiv Detail & Related papers (2022-02-28T18:50:10Z) - Exploiting Sample Uncertainty for Domain Adaptive Person
Re-Identification [137.9939571408506]
We estimate and exploit the credibility of the assigned pseudo-label of each sample to alleviate the influence of noisy labels.
Our uncertainty-guided optimization brings significant improvement and achieves the state-of-the-art performance on benchmark datasets.
arXiv Detail & Related papers (2020-12-16T04:09:04Z) - Adversarial Self-Supervised Contrastive Learning [62.17538130778111]
Existing adversarial learning approaches mostly use class labels to generate adversarial samples that lead to incorrect predictions.
We propose a novel adversarial attack for unlabeled data, which makes the model confuse the instance-level identities of the perturbed data samples.
We present a self-supervised contrastive learning framework to adversarially train a robust neural network without labeled data.
arXiv Detail & Related papers (2020-06-13T08:24:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.