論文の概要: DAMSL: Domain Agnostic Meta Score-based Learning
- arxiv url: http://arxiv.org/abs/2106.03041v1
- Date: Sun, 6 Jun 2021 06:08:05 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-08 18:47:20.394787
- Title: DAMSL: Domain Agnostic Meta Score-based Learning
- Title(参考訳): DAMSL:ドメインに依存しないメタスコアベースの学習
- Authors: John Cai, Bill Cai, Shengmei Shen
- Abstract要約: ドメインに依存しないメタスコアベースの学習は、クロスドメインの少数ショット学習のための、新しく、多目的で、非常に効果的なソリューションである。
我々は,従来のメタ学習手法がソースドメインに過度に適合する点と,サポートセットの構造を応用した過去のトランスファー学習手法の問題点を同定する。
提案手法は,従来のメタラーニングとトランスファーラーニングの限界を克服し,より小さな領域シフトと大規模な領域シフトの双方で精度を大幅に向上することを示す。
- 参考スコア(独自算出の注目度): 3.6398662687367973
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose Domain Agnostic Meta Score-based Learning (DAMSL),
a novel, versatile and highly effective solution that delivers significant
out-performance over state-of-the-art methods for cross-domain few-shot
learning. We identify key problems in previous meta-learning methods
over-fitting to the source domain, and previous transfer-learning methods
under-utilizing the structure of the support set. The core idea behind our
method is that instead of directly using the scores from a fine-tuned feature
encoder, we use these scores to create input coordinates for a domain agnostic
metric space. A graph neural network is applied to learn an embedding and
relation function over these coordinates to process all information contained
in the score distribution of the support set. We test our model on both
established CD-FSL benchmarks and new domains and show that our method
overcomes the limitations of previous meta-learning and transfer-learning
methods to deliver substantial improvements in accuracy across both smaller and
larger domain shifts.
- Abstract(参考訳): 本稿では,ドメインに依存しないメタスコアベース学習(DAMSL)を提案する。
我々は,従来のメタ学習手法がソースドメインに過度に適合する点と,サポートセットの構造を応用した過去のトランスファー学習手法の問題点を同定する。
提案手法の中核となる考え方は、細調整された特徴エンコーダのスコアを直接使用する代わりに、これらのスコアを使用して、ドメインに依存しない計量空間の入力座標を生成することである。
グラフニューラルネットワークを用いてこれらの座標上の埋め込みと関係関数を学習し、支持セットのスコア分布に含まれる全ての情報を処理する。
我々は,確立されたCD-FSLベンチマークと新しいドメインの両方でモデルを検証し,従来のメタラーニングおよびトランスファーラーニング手法の限界を克服し,より小さなドメインシフトと大きなドメインシフトの両方で精度を大幅に向上させることを示す。
関連論文リスト
- Meta-causal Learning for Single Domain Generalization [102.53303707563612]
単一ドメインの一般化は、単一のトレーニングドメイン(ソースドメイン)からモデルを学び、それを複数の未確認テストドメイン(ターゲットドメイン)に適用することを目的としている。
既存の方法は、ターゲットドメインをカバーするためのトレーニングドメインの配布拡大に重点を置いているが、ソースとターゲットドメイン間のドメインシフトを見積もることはできない。
そこで本研究では,まず,対象ドメインとして補助ドメインを構築することによってドメインシフトをシミュレートし,ドメインシフトの原因を解析し,最終的にモデル適応のためのドメインシフトを低減する,新たな学習パラダイムを提案する。
論文 参考訳(メタデータ) (2023-04-07T15:46:38Z) - Domain Adaptation from Scratch [24.612696638386623]
我々は、NLPを機密ドメインに拡張するために欠かせない、新しい学習セットである「スクラッチからのドメイン適応」を提示する。
この設定では、トレーニングされたモデルがセンシティブなターゲットドメイン上でうまく動作するように、ソースドメインの集合からのデータを効率的にアノテートすることを目的としている。
本研究は、データ選択やドメイン適応アルゴリズムからアクティブな学習パラダイムまで、この挑戦的な設定に対するいくつかのアプローチを比較した。
論文 参考訳(メタデータ) (2022-09-02T05:55:09Z) - Low-confidence Samples Matter for Domain Adaptation [47.552605279925736]
ドメイン適応(DA)は、知識をラベルの豊富なソースドメインから関連するがラベルの少ないターゲットドメインに転送することを目的としている。
低信頼度サンプルの処理による新しいコントラスト学習法を提案する。
提案手法を教師なしと半教師付きの両方のDA設定で評価する。
論文 参考訳(メタデータ) (2022-02-06T15:45:45Z) - Instance Level Affinity-Based Transfer for Unsupervised Domain
Adaptation [74.71931918541748]
ILA-DAと呼ばれる適応中のソースからターゲットへの転送に対するインスタンス親和性に基づく基準を提案する。
まず、ソースとターゲットをまたいだ類似および異種サンプルを抽出し、マルチサンプルのコントラスト損失を利用してドメインアライメントプロセスを駆動する信頼性が高く効率的な手法を提案する。
ILA-DAの有効性は、様々なベンチマークデータセットに対する一般的なドメイン適応手法よりも精度が一貫した改善を観察することによって検証する。
論文 参考訳(メタデータ) (2021-04-03T01:33:14Z) - Curriculum Graph Co-Teaching for Multi-Target Domain Adaptation [78.28390172958643]
マルチターゲットドメイン適応(MTDA)における複数のドメインシフトを軽減するのに役立つ2つの重要な側面を同定する。
本論文では,二重分類器ヘッドを用いたCGCT(Curriculum Graph Co-Teaching)を提案する。そのうちの1つがグラフ畳み込みネットワーク(GCN)である。
ドメインラベルが利用可能になると、まずより簡単なターゲットドメインに適応し、続いて難しいドメインに適応する逐次適応戦略であるDomain-Aware Curriculum Learning (DCL)を提案する。
論文 参考訳(メタデータ) (2021-04-01T23:41:41Z) - Your Classifier can Secretly Suffice Multi-Source Domain Adaptation [72.47706604261992]
マルチソースドメイン適応(MSDA)は、複数のラベル付きソースドメインからラベルなしターゲットドメインへのタスク知識の転送を扱う。
ラベル管理下のドメインを暗黙的に整列させる深層モデルが観察されるMSDAに対して、異なる視点を提示する。
論文 参考訳(メタデータ) (2021-03-20T12:44:13Z) - Cluster, Split, Fuse, and Update: Meta-Learning for Open Compound Domain
Adaptive Semantic Segmentation [102.42638795864178]
セマンティックセグメンテーションのための原則的メタラーニングに基づくOCDAアプローチを提案する。
対象ドメインを複数のサブターゲットドメインに,教師なしの方法で抽出した画像スタイルでクラスタリングする。
その後、メタラーニングがデプロイされ、スタイルコードに条件付きでサブターゲットドメイン固有の予測を融合するように学習される。
モデルに依存しないメタラーニング(MAML)アルゴリズムにより,モデルをオンライン更新することを学び,一般化をさらに改善する。
論文 参考訳(メタデータ) (2020-12-15T13:21:54Z) - SB-MTL: Score-based Meta Transfer-Learning for Cross-Domain Few-Shot
Learning [3.6398662687367973]
本稿では,クロスドメインなFew-Shot学習問題に対処する,フレキシブルで効果的な手法を提案する。
本手法は,MAML最適化機能エンコーダとスコアベースグラフニューラルネットワークを用いて,トランスファーラーニングとメタラーニングを組み合わせる。
5,20,50ショット,および4つの対象領域において,精度の大幅な向上が観察された。
論文 参考訳(メタデータ) (2020-12-03T09:29:35Z) - Learning to Combine: Knowledge Aggregation for Multi-Source Domain
Adaptation [56.694330303488435]
マルチソースドメイン適応(LtC-MSDA)フレームワークを併用する学習法を提案する。
簡単に言うと、知識グラフは様々なドメインのプロトタイプ上に構築され、セマンティックに隣接した表現間の情報伝達を実現する。
我々のアプローチは、既存の手法よりも顕著なマージンで優れています。
論文 参考訳(メタデータ) (2020-07-17T07:52:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。