論文の概要: Empowering Language Understanding with Counterfactual Reasoning
- arxiv url: http://arxiv.org/abs/2106.03046v1
- Date: Sun, 6 Jun 2021 06:36:52 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-08 18:45:00.027909
- Title: Empowering Language Understanding with Counterfactual Reasoning
- Title(参考訳): 逆推論による言語理解の強化
- Authors: Fuli Feng, Jizhi Zhang, Xiangnan He, Hanwang Zhang, Tat-Seng Chua
- Abstract要約: 本稿では,反現実的思考を模倣した反現実的推論モデルを提案する。
特に,各実例に対して代表的対実サンプルを生成する生成モジュールを考案し,その対実サンプルと実例サンプルを比較してモデル予測を振り返るレトロスペクティブモジュールを考案した。
- 参考スコア(独自算出の注目度): 141.48592718583245
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Present language understanding methods have demonstrated extraordinary
ability of recognizing patterns in texts via machine learning. However,
existing methods indiscriminately use the recognized patterns in the testing
phase that is inherently different from us humans who have counterfactual
thinking, e.g., to scrutinize for the hard testing samples. Inspired by this,
we propose a Counterfactual Reasoning Model, which mimics the counterfactual
thinking by learning from few counterfactual samples. In particular, we devise
a generation module to generate representative counterfactual samples for each
factual sample, and a retrospective module to retrospect the model prediction
by comparing the counterfactual and factual samples. Extensive experiments on
sentiment analysis (SA) and natural language inference (NLI) validate the
effectiveness of our method.
- Abstract(参考訳): 現在、言語理解手法は機械学習によってテキストのパターンを認識できる並外れた能力を示している。
しかし、既存の手法では、テストフェーズで認識されたパターンを無差別に使用し、例えば、ハードテストのサンプルを検査するために、反事実的思考を持つ米国人間とは本質的に異なる。
そこで本研究では,反現実的思考を模倣した反現実的推論モデルを提案する。
特に,各実例に対して代表的対実サンプルを生成する生成モジュールを考案し,その対実サンプルと実例サンプルを比較してモデル予測を振り返るレトロスペクティブモジュールを考案した。
感情分析(SA)と自然言語推論(NLI)の大規模な実験により,本手法の有効性が検証された。
関連論文リスト
- Counterfactuals As a Means for Evaluating Faithfulness of Attribution Methods in Autoregressive Language Models [6.394084132117747]
本稿では,自己回帰型言語モデルに対する帰属手法の忠実度を評価するために,反事実生成を利用する手法を提案する。
提案手法は, 流動性, 分散性, 分散性, 分散性, 評価プロトコルの信頼性を向上する。
論文 参考訳(メタデータ) (2024-08-21T00:17:59Z) - fAux: Testing Individual Fairness via Gradient Alignment [2.5329739965085785]
いずれの要件も持たない個別の公正性をテストするための新しいアプローチについて述べる。
提案手法は,合成データセットと実世界のデータセットの識別を効果的に行う。
論文 参考訳(メタデータ) (2022-10-10T21:27:20Z) - Logical Satisfiability of Counterfactuals for Faithful Explanations in
NLI [60.142926537264714]
本稿では, 忠実度スルー・カウンタファクトの方法論について紹介する。
これは、説明に表される論理述語に基づいて、反実仮説を生成する。
そして、そのモデルが表現された論理と反ファクトの予測が一致しているかどうかを評価する。
論文 参考訳(メタデータ) (2022-05-25T03:40:59Z) - Interpreting Language Models with Contrastive Explanations [99.7035899290924]
言語モデルは、音声、数字、時制、意味論など、トークンを予測するための様々な特徴を考慮しなければならない。
既存の説明手法は、これらの特徴の証拠を1つの説明に分割するが、人間の理解には理解できない。
比較的な説明は、主要な文法現象の検証において、非対照的な説明よりも定量的に優れていることを示す。
論文 参考訳(メタデータ) (2022-02-21T18:32:24Z) - Explain, Edit, and Understand: Rethinking User Study Design for
Evaluating Model Explanations [97.91630330328815]
我々はクラウドソーシング研究を行い、真偽のホテルレビューと偽のホテルレビューを区別するために訓練された詐欺検出モデルと対話する。
単語の線形バッグモデルでは、トレーニング中に特徴係数にアクセスした参加者は、非説明制御と比較して、テストフェーズにおいてモデルの信頼性が大幅に低下する可能性があることを観察する。
論文 参考訳(メタデータ) (2021-12-17T18:29:56Z) - On the Lack of Robust Interpretability of Neural Text Classifiers [14.685352584216757]
本研究では,事前学習したトランスフォーマーエンコーダをベースとしたニューラルテキスト分類器の解釈の堅牢性を評価する。
どちらのテストも、期待された行動から驚くほど逸脱しており、実践者が解釈から引き出す可能性のある洞察の程度について疑問を呈している。
論文 参考訳(メタデータ) (2021-06-08T18:31:02Z) - On Sampling-Based Training Criteria for Neural Language Modeling [97.35284042981675]
我々はモンテカルロサンプリング、重要サンプリング、補償部分和と呼ばれる新しい方法、およびノイズコントラスト推定を検討する。
対象のクラス後部確率を補正しさえすれば,これらすべてのサンプリング手法が同等に動作可能であることを示す。
Switchboard と LibriSpeech における言語モデリングと音声認識の実験結果が,我々の主張を支持した。
論文 参考訳(メタデータ) (2021-04-21T12:55:52Z) - Unnatural Language Inference [48.45003475966808]
我々は、RoBERTaやBARTのような最先端のNLIモデルは、ランダムに並べ替えられた単語の例に不変であり、時にはよりよく機能することさえあります。
我々の発見は、自然言語理解モデルと、その進捗を測定するために使われるタスクが、本当に人間のような構文理解を必要とするという考えに疑問を投げかけている。
論文 参考訳(メタデータ) (2020-12-30T20:40:48Z) - Pair the Dots: Jointly Examining Training History and Test Stimuli for
Model Interpretability [44.60486560836836]
モデルからの予測は、学習履歴とテスト刺激の組み合わせによって行われる。
モデルの予測を解釈する既存の方法は、テスト刺激または学習履歴の1つの側面しかキャプチャできない。
本研究では,学習履歴とテスト刺激を共同で調べることで,モデルの予測を解釈しやすくするための,効率的かつ異なるアプローチを提案する。
論文 参考訳(メタデータ) (2020-10-14T10:45:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。